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CHAPTER 1    INTRODUCTION 

1.1 Background 

Worldwide, the number of vehicles in operation (cars; light, medium and 

heavy duty trucks; and buses) exceeded the 1 billion-unit mark in 2010 for the first 

time ever [1]. And it is estimated that the world's fleet will reach 2 billion motor 

vehicles by 2020, with passenger-cars representing at least half of all vehicles [2]. 

Internal combustion engines (ICE) are the predominant energy conversion 

technology in transportation and individual mobility. The combustion of hydrocarbons 

(whether fossil fuels today or biofuels in the future) leads to the formation of pollutant 

emissions and greenhouse gases, such as soot, nitrogen oxides (NOx),  carbon 

monoxide (CO) or carbon dioxide (CO2). In United States, 97.5% of transportation 

CO2 emissions come from petroleum-derived fuels in 2010. The gasoline powered 

vehicles has been responsible for 63.8% U.S. CO2 emissions over the last twenty 

years. The transportation accounts for the majority of CO (61.8%) and NOx (50.9%) 

emissions. Highway vehicles are responsible for the largest [3].  

The major challenge in the research and development of internal combustion 

engines is to optimize the engine combustion system to simultaneously enhance 

power output, improve fuel efficiency and lower pollutant emissions. To achieve 

these goals, some of the engine technologies, such as direct fuel injection (DI), 

turbocharger application, and variable valve timing/actuation (VVT/VVA), work 

together to make big-engine power with downsizing engine (reduction of the engine 

size) fuel economy [4].  
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 Modern direct-injection gasoline engines have been in series production and 

increasingly marketed worldwide by many manufacturers since 1996, and it is 

believed that advanced gasoline engines will remain competitive in vehicle 

applications for many years to come. In gasoline direct injection engines (GDI) the 

fuel is injected directly into the cylinder. Compared to a spark-ignition engine 

equipped with the port fuel injection (PFI) system, the direct-injection spark-ignition 

(DISI) combustion has many advantages, such as improvement of fuel consumption, 

better transient response during load variations, more precise control of air-fuel ratio, 

enhanced system optimization, and lower pollutant emission. Direct Fuel Injection is 

the key technology to control fuel metering, fuel-air mixing formation, combustion, 

and emissions of advanced internal combustion engines. These engines will 

command multiple combustion modes, such as high-power and low-temperature 

combustion, for more efficient and cleaner propulsion or power applications. 

Combined with advanced valve-train, variable compression-ratio, variable air-

charging down-sized engine architecture, DI will pave the way for the engine of the 

future. The key physical processes in gasoline direct injection engines include fuel-

spray injection and vaporization, intake-air flow, wall wetting, homogeneous or 

stratified mixture formation, spark ignition and flame formation, flame propagation, 

and exhaust flow with engine-out emissions and catalytic aftertreatment. Some of 

the physical processes are shown in Fig. 1.1. 
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(a)                                         (b)                                         (c) 

 

             (d)                                         (e)                                          (f) 

Figure 1.1 CFD images of key physical processes in DISI gasoline engines: (a) 
Internal nozzle flow of multi-hole gasoline injector. Vapor phase is colored by volume 
fraction. (b) Fuel injection and vaporization from a multi-hole fuel injector, color-
coded with injector nozzle numbers. (c) The side- and bottom- view of the wall 
wetting footprints on the piston. (d) The velocity streamlines of intake-air in cylinder 
through the intake valves. (e) Mixture preparation and spark ignition. (f) 
Homogeneous flame propagation. 

In direct injection internal combustion engines applications, the multi-hole 

nozzle, with its robust features and cost-effectiveness, are being used currently for 

side-mounted or central mounted applications, with primarily stoichiometric 

homogeneous applications. However, higher performance demands greater 



www.manaraa.com

4 
 

 
 

improvements in the injection technology. These requirements have brought even 

greater impetus to the understanding of fluid dynamics of the flow inside the nozzle 

orifice and the fuel sprays immediately outside the nozzle exit, and their dependence 

on the nozzle geometry and internal flow features as shown in Fig. 1.1a. Near-

nozzle fuel jet development dominated by internal nozzle flow and related fluid-

dynamic instability governs the primary break-up process of the injected fuel. The 

momentum of the fuel spray and spray atomization control the mixing of the injected 

fuel with surrounding oxidant gas, which is crucial to achieve highly-efficient and 

clean combustion for direct injection diesel and gasoline engines. 

 It is well known that the combustion and emission characteristics of the DI 

engine are strongly influenced by the rate of vaporization of the liquid fuel, which is 

dependent on the spray atomization (Fig. 1.1b). Therefore, the fuel deliver system, 

nozzle geometry, and spray patterns should be designed to deliver fuel amounts 

more precise and accurate, with a good spray axisymmetric distribution over the 

entire operation range, and must produce a fuel spray that is well atomized during 

the time between injection and ignition. The impingement of liquid fuel by a strongly 

penetrating fuel spray on the combustion chamber wall and piston head in small-

bore direct injection engine (Fig. 1.1c) is inevitable and undesirable, because it 

delays the gas-phase fuel-air mixture preparation processes prior to combustion and 

a possible source for exhaust particulate matter and unburnt hydrocarbon (UHC) 

emissions [5] and should be considered to meet future particle-number-based 

emission standards. 
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  Advanced valvetrain can provide independent control of the intake valve lift, 

profile and duration. The ability to deactivate one of the valves or have different lift 

profiles provides additional control of in-cylinder flow (Fig. 1.1d). The air and fuel are 

supplied separately and the interaction between intake air and spray can affect 

combustion performance in DI engines (Fig. 1.1e). Therefore an advanced valvetrain 

coupled with side-mounted GDI multiple-hole sprays is expected to pave the way for 

better combustion quality and simultaneous reduction of pollutant emissions and fuel 

consumption. In addition, ethanol and ethanol-gasoline blends are being used in the 

down-sized, down-sped and variable-valve-train engine architecture, because of 

their synergy in improving the turbo-charged DI gasoline performance. 

 Homogenized combustion processes (Fig. 1.1f) avoid peak temperatures by 

mixture homogenization and exhaust gas recirculation, and thus lower the emission 

of NOx and soot significantly, which are formed in the presence of peak 

temperatures and fuel overconcentration only. In the combustion process 

development modern methods such as optical spray diagnostics and CFD-based 

engine modeling are applied in order to make pre-selections of relevant injection and 

engine parameters in the early design period and to gain a detailed knowledge about 

the acting physical mechanisms. With these methods important impulses can be 

derived for the combustion system development. 
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1.2 Scopes of Thesis Work and Thesis Outline 

The objective of this study is to understand the internal nozzle flow of DI 

injectors, sprays and vaporization, wall wetting, and interaction between fuel spray 

and in-cylinder gas motion through CFD modeling.  

The measurement of the wall film thickness and mass was carried out by 

experimentally using the RIM technique. The characterization of DI spray and fuel-

air mixing was investigated through the application of optical diagnostics. 

Chapter 2 reviews the engine technologies: direct-injection engines, direct-

injection injectors, DI spray and wall impingements. The applications for advanced 

engine development, such as optical diagnostics and multidimensional modeling 

simulation methods, are discussed.  

Chapter 3 will address the study methodology. The research work has been 

accomplished by optical engine experiments and 3D-CFD based engine modeling. 

The experimental setup for the observation of spray, wall impingement, and in-

cylinder flow is first illustrated. To measure the fuel film thickness resulting from fuel 

spray impingement, the high-speed spray visualization and Refractive Index 

Matching technique is highlighted. Second, the computational models are 

demonstrated including mesh management, turbulence models for quasi-steady 

near-nozzle jet morphology of direct-injection diesel and gasoline injectors; spray 

model, wall impingement model, and liquid film model. 

Chapter 4 first presents the internal flow predictions using with multi-

dimensional multi-phase CFD simulations. Second, the spray characteristics and 

simulations without charge motion are discussed. The formation and evolution of the 
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fuel spray emerging from multi-hole injector and outward opening piezo-driven 

injector were investigated under various surrounding conditions. Then, the 

interactions between spray and cylinder/piston walls are discussed. Fuel film 

thickness resulting from fuel spray impingement will be measured using the RIM 

technique. Numerical study is conducted for the same experiment conditions to 

understand the spray behavior and impingement. Finally, the interactions with 

charge motions inside optical engine are presented. The benefits and tradeoffs of 

valve deactivation and its effect on efficiency, combustion stability and emissions will 

be discussed. The implications to the engine combustion and emission performance 

are summarized. 

Chapter 5 summarizes the work in this thesis and recommends future paths for 

research based on the findings here. 
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CHAPTER 2    LITERATURE REVIEW 

 This chapter presents a literature review covers published experimental and 

computational direct-injection spray research. The purpose of this review is to 

understand the effects of fuel-spray injection on air-fuel mixing, surface wetting, and 

turbulence intensity in GDI engines, and to set up experimental and computational 

investigation guideline.   

 

2.1 Gasoline Direct Injection (GDI) Engine 

With increasing pressure to reduce both fuel consumption and pollutant 

emissions, engine researchers have been looking to a way to combine the two 

current combustion systems: homogeneous-charge spark-ignition for gasoline-fueled 

engines (low pollutant emissions) and direct-injection compression-ignition for 

diesel-fueled engines (high fuel efficiency) [6]. The direct-injection spark-ignition (DISI) 

combustion represents one promising solution to improve fuel economy and meet 

increasingly stringent emissions standards.  

Fig. 2.1 provides an overview of gasoline engine combustion modes. These 

include Port-fuel injection (PFI) engine, homogeneous charge direct-injection spark-

ignition engine, and stratified charge direct-injection spark-ignition engine. The fuel-

air mixture in the gasoline engines is prepared in-cylinder and out-cylinder. PFI 

engines (external mixture formation, Fig. 2.1a) are equipped with the fuel injectors at 

the intake port and the air-fuel mixture is created outside of the combustion chamber. 

Fuel is injected in the port with relatively low fuel pressure in the range of 300-
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500kPa. In PFI engine, a liquid fuel film is formed in the intake port and valve area, 

which results in delayed fuel vaporization. 

 

                       

                   (a)                                          (b)                                        (c) 

Figure 2.1 An illustration of the gasoline engines categorized by fuel-injector location 
and mixture-formation duration. (a) Port-fuel injection (PFI) engine. (b) 
Homogeneous charge direct-injection spark-ignition engine. (c) Stratified charge 
direct-injection spark-ignition engine. 
  

 However, like carburetors have been supplanted by PFI injection, DISI 

engines (internal mixture formation) have the potential to replace the PFI engine by 

producing significant improvements in fuel economy, transient response, 

performance, and emissions over PFI engines [7, 8]. There are two variants of DISI 

engine corresponds to injection timing – the homogeneous charge direct-injection 

spark-ignition engine (Fig. 2.1b) and Stratified charge direct-injection spark-ignition 

engine (Fig. 2.1c). For stratified charge DISI engine, there are three main 

approaches to the combustion process as shown in Fig. 2.2, depending on the 

relative position of the injector with respect to the spark plug and the way the mixture 

is transported inside the cylinder. The injector is side mounted and the injected fuel 

is guided either by the bowl shaped piston (wall guided, Fig. 2.2a) or by the cylinder 

internal airflow (air guided, Fig. 2.2b) toward the spark plug. In the spray guided the 
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injector is placed in a central position in the cylinder head with the spark plug nearby 

(Fig. 2.2c). 

 

                     (a)                                             (b)                                      (c) 

Figure 2.2 An illustration of the configurations in stratified charge direct-injection 
spark-ignition engine: (a) Wall guide direct-injection spark-ignition engine. (b) Air 
guide direct-injection spark-ignition engine. (c) Spray guide direct-injection spark-
ignition engine. 

Homogeneous charge DISI engine (often supplemented with turbocharging or 

supercharging, or both) has the potential to simultaneously improve power (up to 

~15%), increase fuel economy (3%~5%), and reduce unburned hydrocarbon 

(UBHC) emissions, while taking advantage of the same highly effective catalytic 

aftertreatment systems as PFI engines [9]. With lean combustion, the Stratified 

charge DISI engine has the highest benefit potential of fuel economy for the 

reduction of pumping losses and heat transfer losses during low load and speed 

operation, while at the higher load and speed the engine is operated in the 

“homogeneous” mode [10]. Besides, DISI engines also improve the transient 

response, cold startability, and control of air/fuel ratio. 
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2.2 Direct Injection Injector and Spray 

 Advanced fuel-injector technology has been applied in the development of DI 

engines, and four types of injectors: high-pressure swirl injector, fan injector, 

solenoid-controlled single-hole or multi-hole injector, and outwardly opening piezo-

driven injector (PDI), have been used successfully in DI engines [11]. The 

momentum of the fuel spray and spray atomization control the mixing of the injected 

fuel with surrounding oxidant gas, which is crucial to achieve highly-efficient and 

clean combustion for direct injection (DI) diesel and gasoline engines. Recent trend 

of the diesel engine is to use smaller and more orifices, and higher injection 

pressure. The advantages of smaller nozzle holes have been reported [12], such as 

lower particulate matter (PM) and carbon monoxide (CO) emission and possibly 

better fuel economy. To place multiple orifices in an injector nozzle, the orifices are 

located off-axis to the nozzle axis and symmetrically aligned around the nozzle axis, 

which is most preferred DI diesel nozzle configuration.  

 The GDI engines converge to the multi-hole injector geometry because of its 

robustness, flexibility and cost-performance. The gasoline DI multi-hole injectors 

sometimes use both symmetric and asymmetric hole patterns, with or without a 

center hole. In homogenous charge DISI engine, spray trajectory and fuel 

atomization characteristics of the multi-hole injectors significantly is crucial to the 

fuel-air mixing and wall wetting. The multi-hole injectors can reduce smoke 

emissions because of enhanced evaporation, resulting in a shorter liquid length [13]. 

Outwardly opening PDI injector has low penetration to reduce wall wetting and a 

spray A-shape cone that is relatively insensitive to in-cylinder pressure or 
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temperature changes, and a stable recirculation zone near the spray tip. With fast 

and precise injection, outwardly opening PDI injector provides excellent stable spray 

for stratified spray guided DISI combustion systems [9, 14]. Diesel injector is used in 

a gasoline direct injection compression-ignition (GDCI) combustion system and 

delivering gasoline fuel using multiple injections [15]. However, higher performance 

demands greater improvements in the injection technology. These requirements 

have brought even greater impetus to the understanding of fluid dynamics of the flow 

inside the nozzle orifice and the fuel sprays immediately outside the nozzle exit, and 

their dependence on the nozzle geometry and internal flow features. 

2.2.1 Internal Nozzle flow of DI injectors

Spray penetration, mixing and combustion is sensitive to spray orifice exit 

conditions. Fig. 2.3 illustrates the nozzle geometry of two-hole diesel injector and 

gasoline DI injector. 

 

                                                                 (a) 
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(b) 

Figure 2.3 Nozzle geometry. (a) Diesel injector, (b) GDI injector 
 

The internal nozzle flow and near-field primary atomization has been 

receiving attention as a tool to enable analysis of the influence of nozzle design on 

the key spray parameters and reduce reliance on hardware trial-and-tests for multi-

objective spray optimizations [16]. Visible-light imaging techniques have been 

dominantly used to visualize the internal and near-nozzle fuel flow and led to 
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remarkable progress in analysis of near-nozzle spray geometry [17-23]. However, 

these techniques have their limitation in the visualization of near-nozzle jet 

morphology especially for dense and high-speed fuel sprays. To overcome this, 

single-shot ultrafast x-ray phase-contrast imaging technique has been introduced 

recently for dense high-speed fuel sprays [24-27]. X-ray phase-contrast imaging 

technique records phase variations of the emerging radiation from liquid/gas 

interfaces rather than absorption-induced intensity variations when the x-ray beam 

passes through an object [27]. Near-nozzle fuel jet morphology during diesel and 

gasoline injection has been unveiled from recent studies using X-Ray. However, 

such study has not been extended to more realistic and practical multi-hole injectors 

until now.   

 This off-axis location of the orifices makes the near-nozzle spray to be 

strongly affected by the vortex flow inside the nozzle sac other than axial laminar-like 

flow. The structure of the vortex flow and cavitation inside the multi-hole Diesel 

nozzles has been unveiled from quite a few simulation studies [17-19, 28, 29] and 

large scale-up hydraulic (water analog) model experiments. These results showed 

that vortical flow is formed inside the nozzle orifice and it strongly affects the near-

nozzle spray development [17, 18, 29]. Some previous study focused on the near-

nozzle jet morphology of high-pressure Diesel spray injected by a single-hole nozzle 

which center of hole is located on the nozzle axis [23-25].  Previous test results 

revealed the laminar-like jet features formed very near the nozzle exit, which 

becomes unstable mostly due to turbulence and cavitational inside the nozzle and 

aerodynamic effect much later on outside the nozzle. In the case of smooth orifice 
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inlet, where vena contracta and cavitation effects are less significant, mono-

dispersed planar wave is formed on the jet surface, while totally turbulent jet 

morphology rather than wavy structure was observed for sharp orifice inlet. However, 

such a study had not extended to more realistic and practical multi-hole nozzles 

which jets are strongly affected by the vortex flow inside the nozzle. 

 It is now generally accepted in the fuel injection community that for high-

speed jet or pressure-driven single-phase atomizer [30, 31], such as DI diesel or 

gasoline multi-hole injectors, there are different factors affecting the primary breakup, 

including turbulence [32-35], cavitation [36-40], and vortices [41-43]. Turbulent flows 

inevitably are three-dimensional and therefore are accompanied by vorticies or 

vertical flow structure. While cavitation is not always desirable, they are sometimes 

inevitable, especially for the more volatile fuels such as gasoline and higher fuel 

temperature. For transient highly dynamic fuel injection processes, to resolve the 

dynamic interactions of these complicated flow structures covering a wide range of 

length scales and phases, within the short transient injection duration is indeed quite 

a challenge. The CFD simulations using more complicated Eulerian and Lagrangian 

cavitation models have been shown to correlate the rotational flow structure 

observed at the scale-up hydraulic nozzle model [17, 18, 29]. Specifically, there 

seems to the existence of counter-vortex flows inside the scaled-up hydraulic model 

as visualized by the cavitation bubbles.  Depending on the source of locations, these 

cavitation streaks are termed "geometric cavitation" from flow separation, and 

"streak cavitation," which connects between the orifices via the sac.  
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2.2.2 Spray Characteristics of DI injectors 

 In Fig. 2.4, the most commonly used qualities of spray are size distribution of 

droplets, spray tip penetration and plume angle.  

 

 

 

Figure 2.4 Spray parameters 
  

 Spray angle is influenced by the nozzle design, fuel properties and ambient 

conditions. Spray tip penetration as a function of nozzle geometry, injection pressure, 

and ambient conditions is a key factor in the design of diesel and gasoline direct 

injection engines.  

 The spray droplets undergo a number of subroutines: breakup, collision, 

vaporization and drop drag. If the fuel spray impact the piston, the formation and 

evaporation of liquid fuel films should be considered. Among these physical 

processes, the breakup process is most important to droplet predict velocity and 

droplet size.  Numerical study is conducted using Kelvin-Helmholtz / Rayleigh-Taylor 

(KH-RT) breakup model based on the competition between KH and RT instabilities 
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and shows good agreement with experimental results in spray behavior, Sauter 

mean diameter (SMD) and velocity [44].  

 Schmidt et al. [45] developed a Linearized Instability Sheet Atomization 

(LISA) model (Fig. 2.3b) and was applied to pressure-swirl injectors first. It also 

shows that the LISA model is applicable to outwardly opening nozzles as well. The 

Taylor Analogy Breakup (TAB) model proposed by O’Rourke and Amsden [46] is a 

classic method for calculating drop distortion and breakup by analogously to a 

spring-mass system.  

 In order to model sprays, Lagrangian droplet “parcels” represent a number of 

identical drops and is used to statistically represent the entire spray field. In other 

relevant study, the coupled Eulerian-Lagrangian method has been used to correlate 

the injector internal flow and near-field primary atomization [16] without the limitation 

of aerodynamic breakup. There are mainly three turbulence transport models for 

Lagrangian spray modeling: Reynolds Averaged Navier-Stokes (RANS), Large Eddy 

Simulation (LES) and Direct Numerical Simulation (DNS) [44-50]. Accounting for the 

variations in the drop shape (sphere or disk), the drop drag coefficients can be 

obtained by the dynamic drag model [51]. No Time Counter (NTC) method is 

developed to model the collision and coalescence of droplets [52]. The NTC method 

is based on techniques used in gas dynamics for Direct Simulation Monte Carlo 

(DSMC) calculations. This model has been shown to be faster and more accurate 

than O’Rourke’s model under certain conditions [53, 54]. The standard vaporization 

model was used to calculate the time rate of change of droplet radius due to 

vaporization [55].  
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 In spray optical analysis, Mie-scattering, Back-lit, and Schlieren are three 

main techniques to visualize spray behavior. Unlike Mie-scattering technique is for 

liquid phase visualization only, Back-lit is a simple method, which can obtain both 

vapor phase and liquid phase as a shadow. Schlieren method is another effective 

technique to visualize nonhomogeneous transparent flow fields, such as the vapor 

phase of sprays. Using the Schlieren technique, it is able to visualize the change of 

the refraction indexes and density gradient in the object caused by material and 

temperature difference [56, 57]. The details of back-lit method and Schlieren 

visualization technique will be discussed in Chapter 3. 

 

2.3 Wall Impingements and fuel film formation 

 Spray impingement on solid surface occurs in many industrial and technical 

processes [58]. The impingement of liquid fuel on the combustion chamber wall and 

piston head in the direct injection engine is mostly undesirable although difficult to 

avoid, because it affects mixture preparation prior to combustion and is a possible 

source for unburned hydrocarbon (UHC) and particulate matter emissions [59], 

which is the focus of future particle-number-based emission standards.  

 Unthrottled stratified charge DISI engines provide high fuel efficiency at part 

load, but have challenge to create the proper stratified-charge fuel distribution to 

ensure reliable ignition, proper combustion phasing, and minimum engine emissions. 

Most current designs use a high-pressure hollow-cone PDI injector or multi-hole 

injector to deliver fuel sprays into chamber in spray-guide or wall-guide DISI engines 

as shown in Fig. 2.2. During this process, the fuel sprays impact the piston and form 
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a film of liquid fuel [61]. The fuel film formation and evaporation, which result in in-

cylinder pool fires and unburned hydrocarbon and smoke emissions, have been 

studied extensively experimentally and computationally, but many questions remain 

[11]. For homogeneous charge DISI engines, an optimization of injector spray 

pattern can reduce liner and piston wetting which leads to a reduction in oil dilution 

(Fig. 1.1c). It also reduces soot emissions over a wide window of fuel injection timing 

[62]. 

 The problem of wall impingement has been studied quite extensively 

experimentally and computationally for DI diesel, port-injection and DI gasoline [63-

70]. For gasoline-fueled engines, port fuel injection generally produces a thicker fuel 

film than DI because of the lower injection pressure and ambient temperature 

compared to DI cases. It has also been suggested that the level of soot emissions is 

more strongly dependent on the wall film thickness than the total amount of fuel on 

the piston head [71].  

 Recent studies addressed the measurements of adhered liquid fuel film. The 

fuel film formed on the piston head in direct-injection engines was measured 

quantitatively by Refractive Index Matching technique (RIM) by Drake et al. [61, 72]. 

This relatively simple optical method can be used for quantitative temporal and 

spatial measurements of fuel film under vaporizing conditions. The results showed 

that the area-average film thickness is around 1µm and the maximum film is about 

3µm [72], [73]. Liquid film formation and precise thickness measurement have also 

been analyzed by RIM measurements and qualitative LIF visualizations for direct 

injection SI engines [74] using piezo outward opening nozzles. The maximum peak 
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film thicknesses is found to be in the range of 0.9-1.0µm, and that faster evaporation 

rates occur at the outer edges of the film with smaller thickness.  

 Multi-dimensional CFD offers a promising alternative to experiments for its 

capability to offer much more detailed information on mixture formation and spray 

impingement. Numerical methods are still a challenge today, mainly because the 

sub-models used to simulate the physical phenomena of injection spray and droplet 

impingement are not sufficiently validated. Thus there is a need for more accurate 

models and experimental parameters influencing the spray-wall interaction [75]. The 

wall film thickness for diesel spray impingement has been simulated by considering 

and evaluating the heat transfer between the temperature-controlled wall and 

impinging spray [76]. The effects of injection pressure and wall inclination angle on 

the macroscopic behavior of a multi-hole GDI spray were investigate experimentally 

and numerically [77]. The behavior of the spray impingement was observed using an 

optical access engine, however the amount of liquid film remaining on the piston 

crown appears under-predicted after compared with simulation results [78]. 

 

2.4 In-Cylinder Spray/Mixing Characterizations in GDI engines 

 Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity 

to simultaneously reduce fuel consumption and emissions [4]. In GDI engines, fuel is 

delivered during intake or compression strokes directly through a multi-hole, mini-

sac injector with pressures ranging from 1 to 20 MPa [79]. Imperfect mixing and wall 

wetting result in HC and soot, thus the intake ports and combustion chamber are 

designed to achieve a moderate or high tumble motion depending on the engine 
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operating conditions [80-82]. Physical processes in engines can be visualized, 

quantified, and optimized through optical engine diagnostics and CFD-based engine 

modeling. Optical Accessible Engine (OAE) provides the direct imaging capability to 

dynamic and realistic in-cylinder charge motion, and it is widely used for engine 

spray and combustion research [83, 84]. Most common type of OAE is equipped 

with a hollow piston with an optical window on the top of it to provide an optical path 

to the bottom of the piston, which is named Bowditch piston. An optical engine may 

have windows on the side of the cylinder. 

 Because of their robustness and cost performance, multi-hole nozzles are 

currently being adopted as the gasoline DI fuel injector of choice, mostly in the side-

mount configuration. The effects of spray patterns on air-fuel mixing, in-cylinder flow 

development, surface wetting, and turbulence intensity, are discussed for GDI 

engine under different speed/load conditions [62]. In addition, ethanol and ethanol-

gasoline blends are being used in the down-sized, down-speed and variable-valve-

train engine architecture, because of their synergy in improving the turbo-charged DI 

gasoline performance. There has been much research in the literature carried out 

with interactions of DI gasoline sprays and the in-cylinder flow fields [85-93], but very 

little study on the side-mounted multi-hole nozzle with the interaction of charge 

motions.  

 Multi-dimensional computational fluid dynamics (CFD) offers a promising 

alternative to experiments for its capability to offer much more detailed information 

on in-cylinder mixture formation. Numerical method has been used to analyze the 

injector nozzle flow, near-field primary spray evolution, and wall impingement of 
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gasoline and diesel engine, and compare with experimental observation [94, 95]. In 

order to get a better understanding of in-cylinder process, new ideas may arise to 

improve ICE design. It is well-known that turbulence modeling is one of the key 

factors which limit accuracy and predictive ability. The charge motion and its 

interaction with spray were studied computationally and experimentally, and showed 

that the mixture preparation prior to combustion is important for predicting 

combustion characteristics and emissions [96, 97, 98]. These research works also 

show that the significant influence of turbulence modeling on in-cylinder flow 

predicting and Reynolds-averaged Navier-Stokes (RANS) turbulence method is 

probably still the best compromise between reliability and computationally expensive. 

The ignition process and combustion regimes of gasoline DI engine were 

investigated by using CFD method [99]. 
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CHAPTER 3    STUDY METHODOLOGY 

The fuel-air mixing and distribution in DI gasoline engines is the result of 

complex interactions between the sprays/vaporization, turbulent in-cylinder flow, wall 

wetting and the combustion chamber geometry. In this chapter, the use of optical 

diagnostics and numerical methods in the internal nozzle flow, spray evolution, the 

interaction between spray and walls, and the interaction between spray and charge 

motion is discussed. 

  

3.1 Experimental Setup 

In this section, the structure and specification of two DI diesel injectors and 

one DI gasoline injector are first presented. Then the instrument setup and data 

processing method in optical visualization experiments and RIM technique are 

presented. 

 

3.1.1 Direct-injection injectors 

Two diesel injectors (single-hole nozzle, SHN and two-hole nozzle, THN) and 

one gasoline injector (three-hole nozzle) are presented to investigate the in-nozzle 

flow characteristics. The internal structures of SHN and THN visualized with higher 

energy x-ray beam and longer exposure time are shown in Fig. 3.1a and Fig. 3.1b 

[100]. These two nozzles SHN and THN have identical sac diameter (0.71 mm) and 

similar hydro-grinding level. The difference in the hole diameter of both nozzle inlet 

and nozzle exit is around 4%. Also a close-up image of the nozzle tip of the three-

hole GDI injector is shown in Fig. 3.1 c, with the counter bore of the nozzle hole near 
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the exit slightly visible. There is a rim about 1 mm high on the edge of the injector; 

therefore, the closest point of visualization starts at about 1mm downstream of the 

director-plate surface. 

 

                               (a)                                                                (b) 

 

(c) 

Figure 3.1 Internal nozzle structure of diesel injectors: two-hole nozzle (a) and 
single-hole nozzle (b) nozzles captured using phase-contrast imaging technique; (c) 
the close-up view of three-hole GDI injector nozzle tip 
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Table 3.1 shows the specifications of the DI diesel and gasoline injectors. A 

single-hole nozzle (SHN) with the orifice diameter (Do) of 0.135 mm was used in this 

study as a reference nozzle. A two-hole nozzle (THN) with the nozzle angle between 

two-orifices of 135o was used as the test nozzle and compared with the single-hole 

nozzle. The nozzles of THN injector are tapered holes, with the diameter at the 

nozzle inlet 130 μm and 110 μm at the nozzle outlet. The injection pressure range 

applied for these two injectors varied from 30 MPa to 100 MPa. To investigate the 

near-nozzle flow characteristics in the quasi-steady injection stage, relatively longer 

injection pulse duration (3.0 ms) than that of real Diesel engines was applied. 

Experiments were performed under room pressure and temperature conditions. The 

injector design and spray of gasoline DI injector resembles those of DI diesel 

Injectors. A three-hole nozzle GDI injector is used because it represents the basic 

nozzle geometry of the current multi-hole nozzle GDI injector but without too many 

spray plumes to complicate the field of view. The injector nozzle has the orifice 

diameter of 250 µm, the L/D aspect ratio of 1.4, and the inclination angle with the 

injector axis of 20°.  

The fuel properties for the DI diesel injectors and gasoline injector are shown 

in Table 3.2. Diesel was used as the test fuel for single-hole nozzle injector and two-

hole nozzle injector. To conduct CFD simulations for GDI three-hole injector, the n-

Decane properties were used to better approximate the X-ray spray experiment 

conditions. 
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Table 3.1 Specifications of tested injectors for internal nozzle flow 
 
 Diesel injector Gasoline DI injector 

Number of nozzles Single-hole Two-hole Three-hole 

Nozzle diameter, mm 0.135 0.130 0.25 

L/D aspect ratio 6 6 1.4 

Injection pressure, MPa 30, 100 30, 100 10 

Injection duration, ms 3.0 3.0 1.3 

Fuel Diesel Diesel n-Decane 

 

 

Table 3.2 Fuel properties 
 
 Diesel  n-Decane Ethanol Gasoline Iso-octane 

Density [kg/m3] 856 726 785 737 692 

Viscosity [10-6 m2/s] 3.18 1.223 1.52 0.46 0.65 

Surface Tension  

[103 N/m] 
28 23 21.9 22 18.2 

Latent Heat of Vaporization 

[kJ/kg] 
865 263 865 380-500 298 
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3.1.2 Spray Visualization Setup 

 The spray and wall impingement visualization experiments are conducted 

using a spray constant volume vessel chamber without charge motion. The spray 

vessel testing is suitable for detail study of the spray and vaporization, wall 

impingement and surface wetting. 

 Back-lighting visualization (Fig. 3.2a) is a simple method, which can obtain 

both vapor phase and liquid phase as a shadow. Schlieren visualization technique 

(Fig. 3.2b) was carried out to characterize the sprays of both side-mounted multi-

hole nozzle injector and outwardly opening piezo-driven direct injector in a 

conditioned pressure chamber. Then the experiment apparatus were setup for the 

calibration and measurement of liquid fuel film thickness for the same injectors using 

the Refractive Index Matching technique. 

 The experiment apparatus and optical setup for the Schlieren spray 

visualization method is schematically presented in Fig. 3.2b. The chamber is made 

of carbon steel and has a cylindrical shape which inner diameter and length are 

Φ150 mm × 180 mm. The light from a projection lamp formed parallel rays after 

travelling the tiny pinhole and the expansion lens. The collimated light then passed 

through the chamber and focused by another lens. A knife edge is placed on this 

focal point to block half of the refracted light. Finally, the beam came into the high 

speed digital camera with a resolution of 512 × 512 pixels. The CCD camera was 

synchronized with injector driver by a signal generator. 
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(a) 

 

 

(b) 

Figure 3.2  Experimental setup of spray visualization. (a) Back-lighting, (b) Schlieren. 
 

The spray visualization experiments were performed using a high-speed 

digital camera to image the spray structures under typical DI engine fuel injection 

conditions. Both 100% pure ethanol (E100) and RON-91 (Research Octane Number 

91) gasoline were tested as shown in Table 3.2. The results for two multi-hole GDI 

injectors, with specifications listed in Table 3.3, are presented. Injector A is a 
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production injector which is designed for the production metal engine used in this 

research and injector B is a prototype injector for optical engine experiments. 

Injector B has larger orifice diameter and thus higher flow rate compared to Injector 

A because it is designed for E85 compatible engines which requires more fuel 

delivered during operation with high concentration of ethanol fuel. The Injector A with 

pure ethanol, injected at 10 MPa, is the default baseline in this research, and the 

spray images are taken at 1 ms after start of injection (ASOI), unless otherwise 

specified.  

 

Table 3.3 Specifications of tested injectors for spray 
 
 Multi-holes injector A Multi-holes injector B 

Nozzle diameter (mm) 0.230 0.263 

Nozzle length (mm) 0.31 0.30 

Averaged L/D ratio 1.36 1.14 

Number of holes 6 6 

Static mass flow with 

N-Heptane (g/s) 

15.9 20.5 

 

 

Example of spray image 
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3.1.3 Spray Impingement and RIM Setup 

 Table 3.4 shows the injector specifications and conditions of the outwardly 

opening piezo-driven injector and the two side-mounted multi-hole GDI injectors 

(MHN) for wall impingement and RIM tests. The spray angle of the outward opening 

PDI injector is 92.28°. Both multi-hole injectors have 6 nozzles and the spray 

targeting is shown in Table 3.4. The injection pressure was set at 10MPa which can 

be changed by regulating the nitrogen pressure at the fuel tank. Injector C has much 

smaller orifice diameter with the spray pattern more accumulated. The spray 

chamber can be heated up to 250°C by circulation air heater and pressured up to 4 

bar through controlling the valves.  

 

Table 3.4 Specifications of tested injectors for wall impingement 
 
 piezo-driven 

direct injector 
Multi-holes injector C Multi-holes injector D 

Nozzle Diameter 

[mm] 
4 0.104 0.225 

Nozzle  Length 

[mm] 
- 0.23 0.285 

Averaged L/D - 2.21 1.25 

Number of holes Hollow cone 6 6 
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Static mass flow 

with N-Heptane 

[g/s] 

35 4.00 15.4 

Example of 

spray image 

(side view) 

 

The wall impingement experiments for outwardly opening PDI injector and 

multi-hole injector C were performed using the pure ethanol. In the tests of liquid film 

thickness calibration and measurements using RIM technique, pure iso-octane was 

used as the fuel. The fuel properties of ethanol and iso-octane are shown in Table 

3.2. 

The thickness of the liquid fuel film was measured using the Refractive Index 

Matching (RIM) technique. The experiment setup for calibration and PDI injector film 

measurement is displayed in Fig. 3.3. Two 140 mm diameter 50 mm thick quartz 

windows were mounted on the sides of the chamber and one 60 mm diameter 20 

mm thick quartz window was on the bottom. A ground glass diffuser, 50 mm in 

diameter and 2 mm thick, was maintained under the injector with a distance of 10 

mm from the injector tip. The top surface of this commercial quality BK7 quartz was 

polished by grits. Polished diffusers have the advantageous of surface uniformity 
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and 1500 grits level provides very fine scattering. Lighting from a continuous 65 

Volte projection lamp was provided from the side window with an incident angle of 

about 10°. The images were captured with the high speed digital CCD camera 

through a mirror placed directly beneath the impingement surface and outside the 

spray chamber.  

 
 
Figure 3.3  Experimental setup of RIM visualization for PDI injector. 
 

 The RIM measurement setup for the multi-hole injector C is shown in Fig. 3.4. 

The impingement window was placed in the camber with angle of 23° to replicate the 

piston injector orientation of a side-mounted GDI Engine. The window plate used for 

multi-hole injector has the same specifications with the one used for PDI injector 

except the shape is square (100 mm × 100 mm). The perpendicular distance 

between the top surface and the injector tip was set at 20 mm. A continuous 65Volte 

lighting through a mirror placed beneath and outside the chamber to the 
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impingement surface.  The images were captured through side window of the spray 

chamber with the high speed digital CCD camera.  

 

 
Figure 3.4  Experimental setup of RIM visualization for multi-hole injector C. 
 

 One hypothesis in RIM method is that the thickness of film is uniform. To 

avoid the nonuniform film caused by gravity effect in Fig 3.4, the RIM measurement 

test for multi-hole injector D use the setup as shown in Figure 3.5. The six-hole GDI 

injector D was mounted on the cylinder wall of the chamber with angle of 25 deg. 

The injection specifications are shown in Table 3.4. Two 140mm diameter 50mm 

thick quartz windows were mounted on the sides of the inclined pressurized 

chamber (the inclination angle of the camber is 65 deg) and one 60mm diameter 

20mm thick quartz window was on the bottom. The pressurized chamber can be 

heated up to 250°C by a circulation air heater and pressured up to 4bar. A flat 
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optical ground glass diffuser (N-BK7, Thorlabs), 100mm × 100mm, 2mm thick was 

placed in the pressurized chamber horizontally. Various grit polishes on the diffuser 

were tested, but the results presented of this paper were obtained using the 220 grit 

polish, which shows the best sensitivity to the range of film thickness of interest, 

which is around 1 micron. Lighting was provided by a continuous projection lamp 

from the side window with an incident angle of about 10°. The images were captured 

with the high speed digital CCD camera through a mirror placed directly beneath the 

impingement surface and outside the spray chamber.  

 

 

                   

                                                                 (a)  
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                                                                     (b)  

Figure 3.5 Experimental setup of RIM visualization for multi-hole injector D: (a) 
schematic image, (b) photograph. 
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 The RIM technique measures the spatial distribution of the fuel film thickness, 

from which the adhered puddle mass can be calculated. In this method, the 

difference in index of refraction between the impinging surface and air results in the 

scattering of light off the roughened surface, which is modified by the presence of a 

liquid that closely match the index of refraction of the impingement window [73]. 

Drake et al. [61, 72] showed that the relation between the fuel film thickness and the 

variation of intensity in the scattered light. The reflection variation (reduction) through 

the window was written as: 

 

 

 
where  is the intensity of the scattered light in reference image at the location of 

 and  is the intensity with liquid deposit. 

 After the calibration procedure was performed, a function  can be built 

between the liquid film thicknesses  and the reflection variation in the 

scattered light : 

 
 

 
 The calibration was carried out at ambient condition for PDI injector and multi-

hole injector C. The experiment setup was shown in Fig. 3.3 without the injection 

system. By an AccuPet Pro precision digital syringe, a known volume liquid was 

dropped on the roughened window surface. The minimum volume that can be 
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delivered was 0.1μL. The averaged reference dry image was obtained before the 

liquid being deposited on the window. The liquid droplet rapidly expansions after it 

deposits on the roughened window surface. Once the liquid film has reached the 

maximum surface, the image was used as a calibration point. The threshold value of 

the deposit wet area in the image was calculated using Otsu’s method in MATLAB 

software and then the number of black pixels was counted to obtain the area size. 

The reduction in the scattered light  can be calculated similarly. After repeating a 

range of liquid volumes, the calibration relation curve was found as shown in Figure 

3.6. 

 

Figure 3.6 Calibration curve for the rough window between liquid film thickness and 
reduction 
 
 Three square regions were selected in the central part of the annular deposit 

for the PDI injector and on each plume point for the multi-hole injector as shown in 

Fig. 3.7 respectively. The reduction in the scattered light  was calculated for each 
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rectangular area. The liquid film thickness was obtained by averaging for these 3 

square regions. 

 

                                  (a)                                                                    (b) 

Figure 3.7 Computation regions of (a) PDI injector and (b) multi-hole injector C 
 

 In the RIM test of side-mounted multi-hole injector D, A liquid mixture of a 

high volatility component (iso-octane) and a low volatility component (dodecane) 

with known deposit volume was used for calibration procedure similar to a recent 

study by Maligne and Bruneaux [74]. Spray impingement and liquid film thickness 

measurements were performed using iso-octane as fuel. The index of refraction of 

Iso-octane and dodecane is 1.40 and 1.42 respectively, which is close to the index 

of refraction of the window material, 1.46. The calibration experiment was carried out 

at ambient condition to obtain the correlation between fuel film thickness and 

variation of reflection. The experiment setup is the same as shown in Fig. 3.5, but 

without the injection system. 
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 To improve the measurement of liquid fuel film thickness, a liquid mixture of 

10% by volume of dodecane and 90% by volume of iso-octane was used for 

calibration procedure instead of single component calibration fuel. Fig. 3.8 shows the 

time evolution of the averaged reduction in the scattered light and deposit area. The 

liquid mixture was dripped on the dry window by syringe and the scattering reduction 

value increased from 0 to maximum. After the deposited film expanded, the mixture 

rapidly evaporated as noted in stage 1 in Fig. 3.8a. The corresponding reduction 

dropped in less than 3 second to the calibration point. It is assumed that the high 

volatility component (iso-octane) in the mixture was completely evaporated before 

this calibration point and only the low volatility component (dodecane) remained on 

the window surface [74]. The dodecane then evaporated relatively slowly and the 

scattering reduction decreased to the value of dry window in around 24 seconds 

after the calibration point.  

 At the calibration point, the dodecane volume and the corresponding deposit 

area, as shown in Fig. 3.8b, were used to obtain the fuel film thickness. The 

minimum volume delivered by the syringe was 0.1μL in this study. Therefore, the 

dodecane volume was calculated as 10% of the initial volume of mixture droplet, 

which provided a very thin film thickness. Fig.3.8b shows the film wetted area at 

calibration point. The threshold value of this deposit area in the binary image was 

found using Otsu’s method in MATLAB software and the number of pixels below the 

threshold was counted to obtain the size of area. It is assumed that the film 

thickness is uniform. Therefore, the fuel film thickness could be obtained at the 

calibration point from the dodecane volume and the wetted area. The averaged 
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reference dry image was obtained before the liquid was deposited on the window 

surface. The mean reduction in the scattered light can be calculated from the 

reflection variation equation. The calibration technique used in the current system is 

not sensitive enough to resolve thickness below 0.5 microns and thicknesses less 

than that are extrapolated to zero point by default. After repeating a range of liquid 

volumes, the calibration relation curve is shown in Fig. 3.9.  

 

                                                                     (a) 
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                                                                        (b) 

Figure 3.8 Evolution of the mean intensity in the wetted surface on the window and 
calibration point of multi-hole injector D configuration: (a) Evolution of averaged 
reduction  on the window, (b) Evolution of deposit wetting area 
 
 
 After the calibration procedure, the six-hole injector was mounted on the 

cylinder wall of the chamber with angle of 25 deg as shown in Fig. 3.5. Fuel was 

injected on the rough flat window surface at various ambient conditions, injection 

conditions and distance between the injector tip and window, using the same optical 

setup. 
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Figure 3.9 Calibration curves for multi-hole injector D 
  

 The processing of RIM experiment images was shown in Fig. 3.10. First, the 

averaged reference image was subtracted from the wetting images to calculate the 

reduction in scattered light . This was then converted to a binary image that was 

used to obtain the instantaneous area of deposit film. The threshold that converts 

the intensity image into the binary image was calculated by Otsu's method, which 

minimizes the intraclass variance of the black and white pixels. To eliminate the 

noise on the background image, time and space filtering were carried out to improve 

the image quality. For the time filter, a fixed-point filter is used to average a 



www.manaraa.com

43 
 

 
 

sequence of images with window size of 10. For the space filter, a mean filter is 

adapted to 4x4 blocks. Fig. 3.10d and Fig. 3.10e show the filled contour of images 

that applied the time filter and space filters, respectively. Color coded image is used 

to accentuate the intensity, with the red region representing a high intensity, and 

blue region, low intensity. 

  

 

 
             (a)                                                (b)                                               (c) 

 

 

                                      (d)                                             (e) 

 
Figure 3.10 Image processing of the RIM images, (a) Raw image, (b) Background 
removed image, (c) Binary image, (d) Time filtered image, and (e) Time and space 
filtered image. 
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3.1.4 Optical Accessible Engine 

 An optical accessible engine (OAE) which utilizes the same cylinder head, 

injector, cams, and shares the same 86-mm bore as a production 2-litre engine, is 

used for the spray mixing investigation and compared with CFD simulations.  The 

optical engine has quartz liner and Bowditch quartz to provide side- and bottom-view 

spray visualizations inside the cylinder (Fig. 3.11).  A Phantom 7.1 CMOS high-

speed digital camera is used for the imaging with solid lighting provided by 

continuous projector light source for both the Mie and Schlieren imaging techniques.    

 

 

 
Figure 3.11 Schematic and photograph of the Optical Engine. 

 

Optical engine piston has a flat top while the piston head of metal engine has 

a bowl and valve recesses as shown in Fig. 3.11. Major specifications of engines are 



www.manaraa.com

45 
 

 
 

listed in Table 3.5 and the cam profiles are illustrated in Fig. 3.12 for optical engine 

and metal engine respectively. Table 3.6 shows the operation conditions of the metal 

engine cases. 

 

Table 3.5 Specifications of the engines. 
 

 Optical Engine Metal Engine 

Piston Head Flat Bowl 

Injector Type Injector A, B Injector A 

Bore, mm 86 86 

Stroke, mm 108 86 

Compression Ratio 10.9 11.9 

Engine Speed, rpm 1000 1500, 2000 

 
 

 
                                                                       (a) 
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                                                                        (b) 

 
Figure 3.12 Cam profiles of (a) Optical Engine and (b) Metal Engine. Early Intake 
Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). 
 

 

Table 3.6 Operation conditions of the metal engines. 
 
 EIVC LIVC 

Intake valve(s) 2 valve 1 valve 2 valve 1 valve 

Engine Speed, rpm 2000 2000 1500 1500 

BMEP, bar 2 2 8 8 

MAP, kPa 53 95 unthrottled unthrottled 

SOI, CA deg, aTDC  410 410 440 420 
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3.2 Numerical Simulation Setup 

3.2.1 Internal Nozzle Flow  

CFD Simulation has been shown to correlate the injector design to spray 

performances [19, 20, 101].  To simplify, the axisymmetric, two-dimensional 

geometry meshing with a total of 30,000 cells is used for single-hole nozzle, and 

symmetric geometry with 550,000 cells hybrid mesh is used for two-hole nozzle to 

begin with, as shown in Fig.3.13. These symmetry assumptions rule out needle 

eccentricity, surface roughness, and any initial swirl component along the injector 

axis. The working fluid is a mixture of diesel fuel and vapor. And non-condensable 

gas is considered.  

 

(a)                                                                        (b) 
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                                                           (c) 

Figure 3.13 (a) Geometry for single-hole, (b) two-hole nozzles, (c) mesh strategy of 
two-hole nozzles. Inj. Pressure: 100 MPa. 
  

 To aid the interpretation of the results, steady-state CFD simulation is carried 

out at full needle lift for both the single-hole and two-hole nozzles using Fluent. As a 

first step, the Reynolds-Averaged Navier-Strokes (RANS) with standard k-ε 

turbulence model, and Eulerian full-cavitation model, which is based on the 

assumption of a continuous mixture of liquid and vapor bubbles having the same 

velocity, is used. 

 The diagnostics and resolution of cavitation bubbles, which can be sub-

micron in size, inside real-size nozzle is much more difficult for visible light 

techniques and even the current X-ray techniques [102, 103], especially for sac-type 

nozzles.  The simultaneous matching of Reynolds, Cavitation, and Weber numbers 

of the scale-up model to real-size nozzle also makes it difficult to assess and the 

effect of scaling on cavitation models from scale-up model to real size nozzle.  
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However, the hydro-ground hole inlets of both SHN and THN, and the converging 

nozzle configuration of the THN are known to suppress cavitation and increase 

discharge coefficients.  CFD simulations based on RANS and URANS turbulence 

models were applied to study the vortex structure and cavitation in injection holes. 

According to a comparative study of URANS approach with SST turbulence model 

and Scale Adaptive Simulation (SAS) [43],  the current numerical approach, 

although may be overdamped with numerical dissipation, should be sufficient to 

compare the mean flow structure of the ideal nozzles tested.   Finally, the full nozzle 

geometry results for both the RANS with standard k- turbulence model and the 

URANS with SST turbulence model were compared. 

 Fig 3.14 shows the geometry and computation grid (pure hexahedron mesh) 

of three hole GDI injector. Instead of the well-validated Reynolds-Averaged Navier-

Stokes (RANS) with k-ε turbulence model which has been used extensively to show 

the mean flow features inside the nozzle before (e.g., [104]).  It has now been shown 

that the Unsteady Reynolds-Averaged Navier-Stokes (URANS) with shear stress 

transport (SST) turbulence model [43] or turbulence scale resolved approaches like 

Scale Adaptive Simulation (SAS) [43] and Large Eddy Simulation (LES) [16] are 

needed to better simulate the dynamics of turbulent, vortical and usually cavitational 

flow and prove a better optimization and design tool.  

 The SST approach uses a k-ω formulation in the inner parts of the boundary 

layer makes the model directly usable all the way down to the wall through the 

viscous sub-layer, hence the SST k-ω model can be used as a Low-Re turbulence 

model without any extra damping functions. The SST formulation also switches to a 
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k-ε behavior in the free-stream and thereby avoids the common k-ω problem that the 

model is too sensitive to the inlet free-stream turbulence properties. Because of its 

computational efficiency over LES, this approach as implemented in ANSYS-

CFX12.1, with the Eulerian-Eulerian Rayleigh-Plesset cavitation model, is used for 

this study.  The second-order discretization scheme in both spatial and time was 

used. The boundary conditions are set to be static pressure at the step hole exit, 

zero gradient for liquid and vapor VOF, zero gradient for other quantities.  The 

computation grid is sufficiently fine with less than 1 micron near the wall and most of 

y+ is less than 2, and usually more than 15 nodes inside the boundary layer. The 

computed flow rate is within 1% deviation to the measurement, in excellent 

agreement. 

 

 

                                                                (a) 
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                                                                 (b) 

Figure 3.14 The geometry and computation grid of three hole injector (a) Geometry, 
(b) mesh strategy (hexahedron). 
 

3.2.2 Spray and Wall Impingement 

  

BREAKUP MODEL 

 Simulations of multi-hole spray and impingement were carried out using 

CONVERGE [54], a commercial three dimensional CFD software. The spray 

droplets undergo a number of subroutines: breakup, collision, vaporization and drop 

drag. If the fuel spray impact the piston, the formation and evaporation of liquid fuel 

films should be considered. Among these physical processes, the breakup process 

is critical to droplet predict velocity and size. In this study, spray characteristics of 

PDI hollow-cone spray were simulated using LISA-TAB. Once the sheet parcels 

travel a distance from the injector, the parcels are undergoing collision, drag, 
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evaporation, and turbulent dispersion. This sheet break up length of LISA model (Fig 

3.15) is given by 

 

 

 
where  the absolute velocity of the liquid sheet,  is the maximum growth rate, 

and LISA length quantity  is set to 12 in this study. The TAB model is used 

with LISA model to predict secondary drop breakup. 

 

 

Figure 3.15 LISA breakup model. 
  

 Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) breakup model (Fig. 3.16) was 

used to predict the spray behavior of multi-hole injector. The KH model simulated the 

primary aerodynamic instabilities breakup and the RT model calculated the 

secondary breakup due to decelerative instabilities. For KH-RT breakup model, the 

breakup length was written as 
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Where  and   are the density of the fuel liquid and the ambient gas,  is the 

diameter of the orifice,   is the breakup length constant and set to 4 and the KH 

breakup time constant which is determined to be 8 in this study after the comparison 

with the experimental results. Only KH instabilities are responsible for drop breakup 

inside of the breakup length, while both KH and RT mechanisms are activated 

beyond the breakup length. 

 

 

Figure 3.16  KH-RT breakup model. 
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Figure 3.17 Collision regimes of an impinging droplet on a wet wall. 

 

WALL IMPINGEMENT MODEL 

Generally, the collision between an impinging drop and a wet surface may 

result in five different regimes: sticking, spreading, rebounding, breakup and splash 

[57]. 

The interaction of liquid drips and solid surfaces is modeled using a wall film 

model, which is a hybrid model that assumes individual particle-based quantities and 

film-based quantities [45]. The liquid film transport is modeled by the film momentum 

equation [46]. The drop Weber number is defined as 
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where  is the liquid density,  is the drop velocity component normal to the 

surface,  is the drop diameter, and  is the liquid surface tension. The criterion for 

splash [46] is given by  

 

 

 
where  is the local film thickness and  is the boundary layer thickness calculated 

from the drop diameter and Reynolds number.  

 The spray targeting and the numerical conditions are shown in Fig. 3.18 and 

Table 3.7 respectively. The computational domain was a cylinder of 150mm 

x180mm, which represented a constant volume vessel. The number of cells was in 

the range of 75,000 and 270,000, and the cell size was: 2mm for the central region, 

1mm for the each nozzle direction area, and 8mm for the other area. The numerical 

grid used in this research is show in Fig. 3.19a. In addition to the embedded grid 

control, CONVERGE is able to use Adaptive Mesh Refinement (AMR) automatically 

to enhance the mesh around the spray edge as shown in Fig. 3.19b. The level of 

embedding for velocity, temperature, and mass fraction in this study was set to 3, 

which made the mesh size 1mm where AMR was turned on. The maximum number 

of droplet parcels is ensuring the precise resolution of relevant droplet processes. 

over 1 million to The calculation was performed only for Injector A.  
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Figure 3.18  Spray targeting of Injector A. 
 

 

(a) 
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(b) 

Figure 3.19 Computation Grid for the numerical analysis and reprehensive mesh in 
value region – both Grid embedding (a) and AMR (b) and used. 

Table 3.7 Numerical conditions of injector A 

CFD code CONVERGE 

Coordinate system Cartesian 

Numerical space (mm) Φ150 x 180 

Number of cell 300,000 

Cell size (mm) Basic Region:                                   8.0mm 

Embedded Region:                          2.0mm 

Embedded Nozzles Direction:          1.0mm 

Adaptive Mesh Refinement (AMR):  1.0mm 

AMR 
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 The numerical grids used in this study for PDI injector and multi-hole injector 

C is displayed in Fig. 3.20. The computational domain for the simulation of the PDI 

injection was a cylinder of Φ240 mm × 120 mm. The number of cells was about 

500,000. The mesh size was: 2 mm for the central region, 1mm for the injector 

nozzle area. Adaptive Mesh Refinement (AMR) was used in CONVERGE to 

automatically enhance the mesh resolution based upon gradients in field variables, 

such as velocity, temperature and species. The spray plume shape area shows the 

refined mesh around the fuel spray.  

 Similar mesh strategy was used in multi-hole injection simulation as shown in 

Fig. 3.20. Embedded mesh was used in the spray area and along each nozzle. AMR 

refinement method was activated for velocity, temperature and fuel species. Table 

3.4 also shows the spray targeting of the 6 holes DI injector C. 
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Figure 3.20 Computational grid of the PDI injector (top) and spray targeting for the 
multi-hole injector C (bottom) 
 
 The computational grids of multi-hole injector D for wall impingement 

simulation are shown in Fig. 3.21. The computational domain is a cylinder of 

Φ120mm × 40mm. The number of cells was about 150,000. The mesh size was: 

2mm for the central region, 0.5 mm for the injector nozzle area, and 1mm for the 

impinging boundary. Adaptive Mesh Refinement (AMR) was used in CONVERGE to 

automatically enhance the mesh resolution based upon gradients in field variables, 

such as velocity, temperature and species.  
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Figure 3.21 Computational grid of the multi-hole injector D. 

 

 

3.2.3 Interaction between Spray and Charge Motion 

 Optical engine piston has a flat top while the piston head of metal engine has 

a bowl and valve recesses as shown in Fig. 3.11, and Fig. 3.22. Simulation of the 

engine was carried out using commercial CFD software CONVERGE.  
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Figure 3.22 Geometry modeled for CFD evaluation. 
 
 
 The calculation domain included the intake and exhaust ports as shown in Fig. 

3.23. Optical engine piston has a flat top while the piston head of metal engine has a 

bowl and valve recesses. The base grid size was 4 mm with built-in mesh 

refinements, namely embedded refine and Adaptive Mesh Refine (AMR), to make 

the mesh finer at critical areas near the injector and intake valve. The mesh size was 

0.25mm at the injector tip area, 0.125 mm around spark plug for combustion 

simulation, 0.5 mm for the mesh refined by the AMR, and 1 mm for the other area. 

The calculation time step was set to 1 µs.  

 The combination of Kelvin-Helmholtz and Rayleigh-Taylor models, known as 

the KH-RT model, and the No Time Counter (NTC) method were chosen for the 
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break-up and collision model respectively. The model parameters of spray 

atomization are based on the spray characteristics analysis in the constant volume 

vessel without out charge motion. The turbulence model for modeling the turbulent 

flow and mixing is the renormalization group (RNG) k-ε model, which is one of the 

Reynolds-averaged Navier-Stokes equation models.  
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Figure 3.23 Geometry and mesh strategy. 
 

 1-dimensional simulation was carried out to generate the boundary and initial 

conditions for the 3-D CFD simulations. The GT-Power model is showed in Fig. 3.24. 

 

 

 

Figure 3.24 1-D GT-Power model of homogeneous charge DISI engine without EGR. 
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 SAGE detailed chemical kinetics model is used to include the effects of 

detailed chemistry in combustion applications [110]. The SAGE model uses the 

CVODE solver which is part of the SUNDIALS package. This approach allows the 

user to introduce a chemical kinetics mechanism into the simulation with a set of 

CHEMKIN-formatted input files, which here become the standard format for defining 

chemical mechanisms. In this study, a reduced dual component chemistry 

mechanism [54] for RON 91 (iso-octane 91%, n-heptane 9%) is used. To speed up 

the solution of detailed chemical kinetics, the multi-zone model solves detailed 

chemistry (SAGE) in zones where group of cells that have similar thermodynamic 

state [111]. 
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CHAPTER 4    RESULTS AND DISCUSSIONS 

This chapter presents results from experiments and simulations for direct-

injection spray’s in-nozzle flow, vaporization, interaction with wall and in-cylinder flow. 

The first section discusses the internal nozzle flow field of diesel injector and 

gasoline DI injector through the numerical methods. The next section present results 

obtained for an optical constant volume vessel including spray vaporization, fuel film 

formation with experimental measurements and simulation works. The third section 

summarizes the fuel injection, wall wetting, and air-fuel mixing in both optical engine 

and real engine. 

 

4.1 Internal Nozzle Flow  

The fuel spray momentum controls the mixture process of the injected fuel 

with surrounding oxidant gas, which is crucial to achieve highly-efficient and clean 

combustion for direct injection (DI) diesel and gasoline engines. Near-nozzle fuel jet 

development dominated by internal nozzle flow and related fluid-dynamic instability 

governs the primary break-up process of the injected fuel. In this section, the in-

nozzle flow of the diesel injector for DI diesel engine is first discussed. Then the 

internal flow predictions of a multi-hole gasoline DI injector are presented. 

 

4.1.1 Internal nozzle flow of injector for DI diesel engine 

Fig. 4.1 shows the computed pressure contours using the geometrical 

dimension measurement taken from the phase contrast images (Fig. 3.1). As 
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described in Chapter 3.2, the standard k-ε turbulence model and Eulerian full-

cavitation model are used. 

 

                (a)                                                                     (b) 

Figure 4.1 Computed mean pressure contours of single-hole (a) and two-hole (b) 
nozzles. (Inj. Pressure: 100 MPa.) 

 

 

Figure 4.2 Near-nozzle jet morphology of two-hole nozzle and single-hole nozzle 
(Fuel: Biodiesel, injection pressure: 30 MPa, injection duration: 4.0 ms, Images 
taken at 2.0 ms ASOI). 
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The dramatic difference between the SHN and THN is shown in Fig. 4.2 at 

the low injection pressure of 30MPa, using more viscous Biodiesel fuels between the 

SHN and the THN cases. This near-field jet morphology of the injector nozzle was 

obtained by the single-shot ultrafast x-ray phase-contrast imaging technique, 

implemented by the high-intensity and high-brilliance x-ray beam available at the 

Advanced Photon Source (APS) in Argonne National Laboratory. Very distinct wavy 

structure was clearly observed near the hole exit of THN and the lateral jet boundary 

began to spread, as early as 1 mm downstream. In contrast, the jet coming out of 

SHN is very stable, almost laminar-like, and spread much less slowly as far as 3mm 

downstream, although there seems to be some disturbances propagating 

downstream without developing into aerodynamic wave features. As a result, the 

SHN sprays showed more stable spray morphology and smaller near nozzle spray 

angle compared to the THN sprays. Due to relatively stable flow characteristics, the 

break-up of the SHN spray occurred at farther downstream of the nozzle exit 

compared to the THN spray. The Reynolds numbers of these conditions are not very 

high, and the flow is in the transitional regime and not yet highly turbulent. Due to the 

internal flow difference, however, the THN jet already manifests more instability. 

The different in-nozzle flow structure between the two nozzle configurations 

can be readily illustrated using CFD simulations.  The streamlines computed for the 

SHN and THN using RANS are shown in Fig. 4.3. The three-dimensional fluid flow 

entering the two-hole nozzle creates much more complicated streamlines with 

stronger curvatures.   
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              (a)                                                                     (b) 

Figure 4.3 The 2D and 3D streamline Flow characteristic in the sac and nozzle inlet 
for SHN (left) and THN (right) as computed using RANS. 
 

First we examine the velocity and turbulence intensity distributions at the exit 

plane of THN in Fig. 4.4 and 4.5. For illustration purpose, only the THN profiles on 

the major symmetry (vertical and horizontal) axes are shown. As a result, the 

velocity profile of the THN is much more complicated than SHN. The computed 

mean flow structure shows that THN has a less uniform mean velocity profile, with a 

downwash feature in the vertical plane along the injector axis, and a thicker shear 

layer near the wall, as shown in Fig. 4.4, as well as a higher turbulence intensity, 

which is normalized with the mean velocity, as shown in Fig. 4.5. 
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Figure 4.4 The normalized streamwise velocity profiles of the axisymmetric SHN 
compared to those of the THN on the major axes at the exit plane. 
 
 
 

 

Figure 4.5 The turbulence intensity profiles of the axisymmetric SHN compared to 
those of the THN on the symmetry line on the major axes at the exit plane. 
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 The interaction of the downwash with its accompanied higher mass and 

momentum fluxes on the lower side, and the two counter-rotating vortices in 

precession could explain the shorter wavelength on the lower (down flow) side. The 

divergence angles, which are the angle formed by the velocity vectors with orifice 

axis, are also much larger for THN cases compared with SHN one, c.a. up to be 

about an order of magnitude larger.  These fundamental flow features are consistent 

with the stronger flow instability and wider cone angle observed for the THN sprays 

compared to those of SHN, although any geometric or operational asymmetry due to 

even surface roughness or valve eccentricity will only enhance the instability. 

  

 

 

Figure 4.6 The effect of hole number on the streamlines of multi-hole nozzles. 
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The effects of number of holes can be more readily investigated using RANS.  

The computed streamlines are shown in Fig. 4.6 which shown similar behavior with 

a slight difference.  Fig. 4.7 shows that the number of hole tends to increase the flow 

asymmetry.  As a result of the downwash, multi-hole nozzles also produce stronger 

divergent velocity vector angles at the exit, consistent with experimental observation. 

 Another perspective can be gleaned by examining the vorticity profiles at the 

exit plane. The counter-rotating vortices are symmetric by default if the symmetry 

boundary conditions are imposed geometrically.  They are formed by the flow 

negotiating the valve and sac geometry into the orifice and not directly from 

cavitation, although cavitation model is included in the analysis.  They grow in 

intensity as they progress through the orifice due to the taper-hole geometry, and 

become quite homogenous when they exit the hole.  The counter-rotational vortices 

are actually bound or clad by a thin shear layer near the orifice wall, which imposes 

the no-slip boundary condition.  This thin annular shear layer serves to constrict the 

streamwise vortices and to generate turbulence, but upon the flow exiting the orifice, 

it will be relaxed immediately and allow the vortices to freely interact, subject to 

strong turbulent vortex dynamics and much weaker aerodynamic shear stress at the 

interface, at least initially. These rotational internal flow features due to the multi-hole 

nozzle geometry have not been considered in almost all spray calculations or 

multiphase breakup simulations. 
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Figure 4.7 The effect of hole number on the normalized exit velocity profiles (vertical) 
of the multi-hole nozzle. 
 
 

 

Figure 4.8 The Effect of hole number on the normalized streamwise vorticity profiles 
of the multi-hole nozzle. 
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 Fig. 4.8 shows that there is a pair of dominant counter-rotating core vortices 

at the exit plane, and that the vorticity strength in general increases with the number 

of hole. In comparison to SHN which does not develop streamwise vorticies by 

default under ideal symmetry condition.  The vorticity strength of the multi-hole 

nozzle is surprisingly strong, on the order of a million inverse sec, given the relatively 

low Reynolds number turbulent flow conditions.  

 A better visualization can be achieved by plotting the streamlines inside the 

THN hole as viewed from the orifice entrance.  Fig. 4.9 shows such a view, using 

results from a full nozzle model to relax the forced symmetry condition imposed by 

the half-hole computation domain.  By default, the same streamline view for SHN is 

radial and devoid of any rotation, but the streamlines inside the THN is rotational, 

even enhanced as they accelerate through the converging tapered orifice.  The 

interaction of the downwash behavior with the two counter-rotating vortices in 

precession could explain the shorter wavelength on the lower (down flow) side, 

observed in Fig. 4.9. Also shown for comparison is the results using URANS with 

shear stress transport (SST) turbulence model [105], which is a two-equation eddy-

viscosity model which has become very popular. The use of a k-ω formulation in the 

inner parts of the boundary layer makes the model directly usable all the way down 

to the wall through the viscous sub-layer; hence the SST k-ω model can be used as 

a Low-Re turbulence model without any extra damping functions. The SST 

formulation also switches to a k-ε behavior in the free-stream and thereby avoids the 

common k-ω problem that the model is too sensitive to the inlet free-stream 

turbulence properties.  The newly available in Fluent Scale-Adaptive Simulation 
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(SAS) model introduce the von Karman length-scale into the turbulence scale 

equation which provides a LES-like behavior in unsteady regions and standard 

RANS capabilities in stable flow regions [106]. Instead of two vorticies observed 

using the more dissipative RANS simulation, the URANS simulation with SST and 

SAS shows four vorticies, or two pairs of counter-rotating vorticies. 

 

        

                              (a)                                                                   (b)  
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                                                                  (c)                                                                    

Figure 4.9 The streamlines inside the THN hole as viewed from the entrance, 
showing rotational curvatures and acceleration as the flow moves through the 
converging tapered hole.  From left to right: RANS with Realizable k-turbulence 
model, URANS with SST turbulence model, and Scale Adaptive Simulation (SAS) 
model. 

 

However, the use of vorticity could be misleading when rotation due to pure 

shear and rotation due to actual swirling motion become comparable, e.g. wall-

bounded flows within the nozzle hole.  Therefore, the Q-criterion [43, 107, 108], 

which is the second invariant of velocity gradient tensor u, is a better indication.  

Positive Q iso-surfaces isolate areas where the strength of rotation overcomes the 

strain, thus making those surfaces eligible as vortex envelopes.  The computed 

URANS iso-surface results of the Q, cavitation, and simultaneously are shown in Fig. 

4.10, 4.11, and 4.12 respectively.  At the injection entrance, the upper vortex pair is 

stronger than the lower pair due to stronger streamline curvature. However, the swirl 

intensity of the upper vortex pair loses intensity along the injection hole due to the 

downwash effect, whereas the decay of the lower vortex pair is much slower. As a 
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result, the lower vortex pair turns out to have stronger intensity than the upper one 

at the nozzle exit. This also explains the observation in the spray that the 

lower waves have consistently shorter length scales than the upper ones 

mentioned above. 

 The oscillation frequency of the URANS simulation is on the order of 5 to 10 

MHz depending on the injection pressure from 30 to 100 MPa using diesel fuel 

properties, which is consistent to the wavelength observed experimentally.  These 

results are very encouraging in light of the phase-contrast X-ray imaging, however, 

more research is needed in both the experiment and simulation sides to improve and 

validate the accuracy of the numerical schemes, and physical submodels, including 

turbulence and cavitation and their interactions.   

 

 

Figure 4.10 The vortex envelopes denoted by iso-surface of Q-criterion inside the 
THN at 30MPa and 100MPa injection pressure, as computed by URANS with SST 
turbulence model. 
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Figure 4.11  The cavitation contour (vapor volume concentration as marked) inside 
the THN at 30MPa and 100MPa injection pressures, as computed by URANS with 
SST turbulence model. 
 
 
 

 

Figure 4.12 The cavitation contour (green, 1% vapor concentration) and the vortex 
envelopes denoted by iso-surface of Q-criterion (orange, 1E13/sec2) inside the THN 
at 100MPa injection pressure, as computed by URANS with SST turbulence model. 
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4.1.2 Internal nozzle flow of GDI injector 

Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE 

powertrain in the automotive industry worldwide because of their robustness and 

cost-performance. Although their injector design and spray resembles those of DI 

diesel injectors, there are many basic but distinct differences due to different 

injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the 

nozzle hole, closer spray-to-spray angle and hence interactions. 

 The interface structure as shown by the X-ray phase contrast is characterized 

by ligaments and possibly membranes, indicative of turbulence/vorticities and 

cavitational or two-phase breakup mechanisms.  Further insight can be obtained by 

carrying out the Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation 

with shear stress transport (SST) turbulence model to quantify the interactions of 

turbulence and cavitation [43].  The injection pressure of 100 bars is kept constant 

and the n-Decane properties were used to approximate the test fluid. The result of 

two constant needle stokes of 13 μm and 50 μm, representing the early and quasi-

steady state of the spray development are presented in Fig. 4.13 and 4.15 

respectively. Only six visualizations within 100 μs of the stable URANS simulation 

are shown to depict the major features of the non-stationary flow field. For wall-

bounded flows within the nozzle hole, the use of vorticity could be misleading since 

rotation due to pure shear and rotation due to actual swirling motion may become 

comparable.  Therefore, the second invariant of velocity gradient tensor u, or the 

Q-criterion, is a better indication.  Positive Q iso-surfaces isolate areas where the 
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strength of rotation overcomes the strain, thus making those surfaces eligible as 

vortex envelopes.   

 

 

 

(a) 

(b) 
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Figure 4.13  URANS simulation of the (a) the constant 50%-vapor fraction contours, 
(b) Q=0.5E13 iso-surface contours, and (c) the interactions of streamlines on the 
symmetry plane with 80%-vapor fraction contours inside the nozzle hole and sac 
volume, using n-Decane properties,100-bar injection pressure,, and 15μm needle 
stroke. 
 

 The SST model has been shown to be less dissipative than the k-epsilon 

model and should produce more accurate results.  The first notable features of the 

flow are the large extent of cavitation region, as depicted by the constant 50%-vapor 

fraction contours in Fig. 4.13 (a), in these short aspect ratio holes. Since low-

volatility n-Decane fuel properties are used, the cavitation is not primarily due to the 

low vapor pressure but vorticies and air ingestion into the nozzle hole.  Therefore, 

the cavitation streaks are limited inside the hole and not much into the sac; they are 

anchored on the sharp hole entrance wall and sometimes directly upstream to the 

ball valve surface, and it. As a result, these nozzles have quite low discharge 

(c) 
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coefficients, ca. less than 50% (Fig. 4.14).  The high Q =0.5E13 iso-surface contours 

shown in Fig. 4.13 (b), however, extend well into the sac and around the ball valve.  

The maximum value  is similar to those in diesel orifice using the same techniques, 

but are much more complicated in structure and originated well upstream, around 

the valve and inside the sac volume. The Reynolds numbers under this condition is 

not very high, just falling inside the transitional low turbulent flow regimes, but the 

unsteady nature of the transitional flow field coupled with the cavitation, similar to 

those in compound nozzle [104] can break up the fluid quite efficiently. The 

interactions of streamlines on the symmetry plane with 80%-vapor fraction contours 

inside the nozzle hole and sac volume are plotted in Fig. 4.13 (c) which shows the 

flow wraps around the cavitation streaks inside the nozzle hole in a highly unsteady 

and complicated manner. 

 

Figure 4.14 Early view of GDI spray. Injection pressure is 800 psi; imaging interval 
timing is 50 μs. 
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(a) 

(b) 
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Figure 4.15 URANS simulation of the (a) the constant 50%-vapor fraction contours, 
(b) Q=0.5E13 iso-surface contours, and (c) the interactions of streamlines on the 
symmetry plane with 80%-vapor fraction contours inside the nozzle hole and sac 
volume, using n-Decane properties,100-bar injection pressure, and 50μm needle 
stroke. 
  

 The effects of needle stroke on the quasi-steady nozzle flow structure were 

also compared using URANS simulation and shown in Fig. 4.15 at the higher needle 

stroke of 64 μm.  The flow rate is much higher, and so is the Reynolds number under 

this condition, but are still not higher 10,000 for the test cases shown.  The cavitation 

intensity is less and smaller in size than the low-lift case, and the fuel is able to fill 

the hole more. Further validation and statistical analysis are warranted to 

quantitatively correlate the internal flow inside the nozzle to the breakup mechanism. 

 

(c) 
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Figure 4.16 RANS simulation using k-ε model for similar conditions as Fig. 4.14(a). 
The constant 50%-vapor fraction contours are shown with 75% transparency, with 
the cut-plane profiles shown at L/D = 0, 0.7, 1.4.

Comparing results of the LES simulation [16] at the exit of the nozzle, the 

current results have similar low discharge coefficients, which means that about half 

of the hole area is not effectively used or occupied with liquid. The liquid phase 

distributions, however, were quite different. It is not clear whether the different 

injector design, computational techniques or boundary conditions contribute most to 

the difference. More experiments and simulations are clearly needed to resolve this 

interesting research topic. However, the effects of turbulence models are significant 

as shown in Fig. 4.16, where the phase distributions of the same geometry 

computed using k-ε model, which is used also in earlier papers [16]. The more 

dissipative nature of k-ε model predicts more stable two-phase distributions inside 

the hole, with the liquid on the inside (toward the centerline of the injector axis) and 
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center of the hole, whereas the SST predicts a much more unsteady distribution for 

the same low-lift case as shown in Fig. 4.10a. 

 The simulation results (Q-criterion and vapor fraction) of GDI injector show 

that the complicated unsteady flow features dominate the near-nozzle breakup 

mechanisms which are quite unlike those of diesel. 

 

4.2 Spray and Wall Impingement 

 In order to obtain a better understanding of the fuel-air mixing in DISI engine, 

the DI spray injection and spray-wall interaction are studied in a quiescent spray 

chamber experimentally and numerically. The first two sections discuss the optical 

visualizations and numerical results of the spray without wall impingement and 

charge motion respectively. The last section presents the experimental results and 

CFD simulations of wall impingement and fuel wetting measurement. 

 

4.2.1 Sprays in Quiescent Spray Chamber 

 Spray and its vaporization are one of the key processes in DI engines, 

because of the spray-wall interaction and fuel-charge motion interaction. Mie 

scattering, back-lighting, and Schlieren visualization have been widely adopted for 

spray visualization [11, 63, 87~91]. Some typical spray images of the GDI injector A 

and B are shown in Fig. 4.17, where the collapsed spray due to flash boiling are 

imaged using different lighting and optical techniques. Schlieren imaging is able to 

visualize the vapor clouds around the spray, which are invisible in the Mie scattering 

images, or very vague in the back-lit images; therefore is the preferred technique to 
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visualize vaporizing sprays, as shown in Fig. 4.18 and Fig. 4.19.  (grid size is 5mm × 

5mm). 

 

 

 
                                                               (a)                                                                                             

      

 
                                                                (b) 

Figure 4.17 Comparison of different Visualization Techniques, 1.5ms ASOI, E100, 
injector A:   (a) Tcell= 150oC,  Pinj= 5MPa. (b) Tcell= 200oC,  Pinj= 10MPa. 
  

 It should be noted that only slightly slower vaporization and faster spray 

penetration is observed when replacing E0 with E100 with the same injected volume 

or pulse width [109]; however, when equivalent fuel energy are compared, the spray 

Mie, Pcell = 1bar; Schlieren, Pcell = 1bar; Mie, Pcell = 3bar; Schlieren, Pcell = 3bar 

Back-lit, Pcell = 1bar; Schlieren, Pcell = 1bar; Back-lit, Pcell = 3bar; Schlieren, Pcell = 3bar 
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are significantly different toward the end of injection because of the larger fuel mass 

injected and the higher latent heat needed for vaporization, as shown in Fig. 4.19.  

  

 

 
 

Figure 4.18 Effect of chamber temperature, pressure, and fuel temperature, Pinj= 
10MPa, Energy content is equivalent of 10mg of gasoline. 1ms ASOI, E100, injector 
B. 
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Figure 4.19 Effect of fuel composition. Tch = 200oC, Pch = 1bar, Tfuel = 60oC, Energy 
content is equivalent of 5mg of gasoline. 
 

 

 The spray of a PDI outwardly opening injector is characterized by a hollow 

cone spray. Figure 4.20 illustrates the hollow-cone spray propagation from an 

outward opening piezo-driven injector at time 0.5, 1, 1.5 and 2 ms after the start of 

injection. The process of vaporization was evaluated by the Schlieren images. 

During the injection process, the ambient gas in the chamber was displaced by the 

ASOI:

0.5ms 

 

 

1.0ms 

 

 

 

1.5ms 

          E100                      E50                        E0                                  E100                         E0 
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high momentum liquid droplet and was accelerated with the dispersed droplets by 

the drag forces. The liquid droplet vaporization start at the spray atomization 

occurred, the vapor envelop was decelerated and overtaken by the following liquid 

droplets. High compact spray was observed where the chamber pressure is 4bar. 

The wall impingements and 3D-CFD simulation for the PDI injector and Multi-hole 

GDI injector will be discussed in next sections. 

 

(a) Tch= 25°C, Pch= 1bar;     (b) Tch= 200°C, Pch= 1bar;    (c) Tch= 25°C, Pch= 4bar;     (d) Tch= 200°C, Pch= 4bar 

 
Figure 4.20 Schlieren spray images for PDI injector under variant chamber pressure 
and temperature. 
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4.2.2 CFD Techniques and Spray Simulation 

 Compared to Diesel sprays, the DISI sprays have smaller enclosed cone 

angle, more volatile fuels, shorter aspect-ratio nozzle holes and consequently more 

unstable vortices. As a result, more interactions among the various spray plumes are 

expected. Therefore, in addition to the embedded grid control used to reduce the 

grid size at sensitive areas such as the injector tip, Adaptive Mesh Refinement (AMR) 

is also used to automatically enhance mesh resolution in critical areas of spray 

development within the spray or combustion chamber. The Kelvin-Helmholtz and 

Rayleigh-Taylor (KH-RT) breakup model, the No Time Counter (NTC) collision 

model, and the renormalization group (RNG) k-ϵ model are used, in conjunction with 

the RANS solver. The uncertainty in the liquid fractions of the multi-phase jets and 

the interactions among different spray plumes, as well as and the potential of flash 

boiling [5, 15, 20~23] make it difficult to simulate the dynamic spray plumes using 

RANS simulation, although reasonable agreement in spray plume penetration could 

be achieved, as shown in Fig. 4.21. 

 

 

 

Figure 4.21  Measured and computed Spray Images; Tch = 200oC, Pch = 1bar. 

ASOI:         0.25ms               0.50ms               0.75ms              1.00ms             1.25ms               1.50ms     
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The simulation images show the mass fraction of ethanol vapor. The overall 

shapes of sprays were comparable. Since the simulation outputs are vapor fraction, 

it is reasonable not to have the upstream portion of the spray at 25C conditions. And 

the center of the plumes had lower fraction because of the liquid core. As the 

temperature increased, the liquid core evaporated and dense vapor appeared 

instead. 

                         

 

           0.2ms       0.7ms                1.2ms       1.7ms 

Figure 4.22 Comparison of spray images from the experiment (top) with the 
numerical simulation (bottom), After SOI: 0.2ms, 0.7ms, 1.2ms, 1.7ms, Injector A, 
25C 1bar. 



www.manaraa.com

92 
 

 

 

Figure 4.23 Comparison of spray images from the experiment (top) with the 
numerical simulation (bottom), After SOI: 0.2ms, 0.7ms, 1.2ms, 1.7ms, Injector A, 
200C 1bar. 

 

           

Figure 4.24 Comparison of spray images from the experiment (top) with the 
numerical simulation (bottom), After SOI: 0.2ms, 0.7ms, 1.2ms, 1.7ms, Injector A, 
25C 3bar. 

0.2ms   0.7ms              1.2ms        1.7ms 

0.2ms    0.7ms              1.2ms        1.7ms 
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Figure 4.25 Comparison of spray images from the experiment (top) with the 
numerical simulation (bottom), After SOI: 0.2ms, 0.7ms, 1.2ms, 1.7ms, Injector A, 
200C 3bar 

The comparison of penetrations with the experimental data is plotted in 

Fig.4.26. L, M, and R in the figure indicated Left, Middle, and Right plume of the 

spray. The simulation fairly agreed with the empirical data, especially at the early 

stage of injection. However, it slightly under-predicted the penetration at middle 

stage of injection and eventually became longer than the experimental data at the 

end. This indicates that the RT model did not work well and further modification is 

required. The mass of liquid and vapor ethanol in the domain is plotted with time in 

Fig.4.27. 

0.2ms     0.7ms              1.2ms        1.7ms 
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           (a)  Tch=25C, Pch=1bar    (b) Tch=200C, Pch=1bar 
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         (c)  Tch=25C, Pch=3bar    (d) Tch=200C, Pch=3bar 

Figure 4.26 Comparison of experiment and numerical results of vapor phase 
penetration.  
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Figure 4.27  Liquid and vapor mass change in time. 
 
 
 
 In Figure 4.28, the images of spray propagation of GDI injector C were 

obtained experimentally and numerically. The chamber temperature is 200°C and 

chamber pressure is 1bar. It is clearly seen that the lost momentum of the vapor 

phase envelop and overtaken by the following liquid spray. This process can be 

evaluated in Fig. 4.29.  
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Figure 4.28 Comparison of Schlieren images and CFD-simulation (3D parcel 
representation) for multi-hole injector (Tch= 200°C, Pch= 1bar, Injection duration = 
0.5ms). 

                              

Figure 4.29 Comparison of experiment and numerical results (velocity vector field) of 
multi-hole injector at 0.75ms after start of injection. 
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 The numerical analysis of the PDI injection was carried out using 

CONVERGE 3D-CFD codes. In each simulation case, about 30,000 parcels were 

tracked for sufficiently precise statistical resolution. The binary Schlieren images 

were used for general spray shape comparison of the developing processes of 

hollow-cone sprays with two chamber temperatures and pressures as shown in 

Figure 30. The 3D parcel representation and the binary Schlieren images have 

shown a reasonable agreement in spray shapes spray cone angle and spray 

penetration. As the velocity vector field of the gas phase in Figure 4.30 indicated, the 

velocity of gas phase increases due to the high momentum liquid phase, which 

result in the recirculation zones. Strong vortex has been found in the inner and outer 

region of the hollow spray with chamber pressure 4bar. It is believed that the density 

of the ambient gas in the chamber strongly effect the spray structure, spray 

propagation and vortex formation. As shown in Figure 4.31, the predicted value of 

spray penetration using the dynamic drag model shows good agreement with the 

experiment results. 
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(a) Tch= 25°C, Pch= 1bar; 
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(b) Tch= 200°C, Pch= 1bar; 
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(c) Tch= 25°C, Pch= 4bar; 
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(d) Tch= 200°C, Pch= 4bar 

 
Figure 4.30 Comparison of binary Schlieren images and CFD-simulation for PDI 
injector. 
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 In this study, the spray penetration is defined as the maximum distance 

between the PDI injector nozzle and the tip of the spray. Figure 3.21 display the 

process of automatically calculating the spray penetration using MATLAB. It is 

believed that the injection pressure, the drag, the fuel properties, spray cone angle 

and ambient pressure govern the spray penetration [44]. Among these factors, the 

drop drag coefficients are critical for accurate spray modeling.  

 

                                                              (a) 

 

Figure 4.31 Comparison of experiment and numerical results of PDI injector spray 
penetration. 
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4.2.3 Wall Impingement and RIM test for PDI injector 

 In section 4.2.1 and 4.2.1, the formation and evolution of the fuel spray 

emerging from multi-hole injector and outward opening piezo-driven injector were 

investigated. In this section, the spray-wall interaction is discussed experimentally 

and numerically. Then the measurement and simulation of wall wetting are carried 

out using RIM technique. 

 The wetting of piston surface by a strongly penetrating fuel spray is believed 

to be a major source of soot emissions. This section first presents the wall 

impingement numerical and experimental results of DI injectors. In Figure 4.32, the 

impingement for a PDI injector spray is computed using same drop/wall interaction 

model. The flat piston surface is 10mm down from the injector tip. The vortex 

structure formed by the impingement is similar with the multi-hole injector. 

Experiments are required to verify the propagation of spray and the height of the 

impinged spray.  

 

Figure 4.32 CFD-simulation of piston impingement, PDI injector (3D parcel 
representation) (Tch= 100°C, Pch= 1bar, Injection duration = 0.5ms). 
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 Fig. 4.33 shows the time evolution of reduction in the scattered light of the 

PDI spray at Tch= 150 °C, Pch= 3 bar and Injection duration = 0.5 ms, which displays 

the process of liquid film evaporation. The instantaneous liquid fuel film structure 

was observed by both visualization and quantitative analysis. The instantaneous 

images of the fuel film thickness is obtained at 1.25 ms (0.75 ms for the case of Tch= 

150 °C, Pch= 1 bar, Injection duration = 0.2 ms) for the spray PDI injector as shown 

in Fig. 4.34 and Fig. 4.36. Also the resulting time evolution of liquid film thickness of 

PDI spray for the different conditions is presented in Fig. 4.35 and Fig. 4.37.  

  

 

 

Figure 4.33 Evolution of fuel film thickness (Tch= 150°C, Pch= 3bar, Injection duration 
= 0.5ms). 
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 The annular form area on the wall surface is much larger and reduction level 

is higher for longer injection duration, which can be proofed from time evolution of 

liquid thickness as shown in Fig. 4.35 and Fig. 4.37. The chamber temperature 

strongly effect the film thickness after the comparison between Tch= 100 °C and Tch= 

150 °C, the film thickness decreases much faster for the case of Tch= 150 °C.  

 

 

Figure 4.34 Instantaneous images of the fuel film thickness. PDI injector, Tch = 
100°C. 
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                                                               (a)  

 

 

(b)  
 
 

Figure 4.35 Averaged film thickness of PDI injection, (a) Tch = 100°C, Injection 
duration = 0.2ms, (b) Tch= 100°C, Injection duration = 0.5ms. 
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Figure 4.36 Instantaneous images of the fuel film thickness. PDI injector, Tch = 
150°C. 
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                                                                (a) 

 

 

                                                                (b) 

 
Figure 4.37 Averaged film thickness of PDI injection, (a) Tch = 150°C, Injection 
duration = 0.2ms, (b) Tch= 150°C, Injection duration = 0.5ms. 
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4.2.4 Wall Impingement and RIM test for multi-hole injectors 

 In homogeneous-charge direct-injection engines, a side-mounted or center-

mounted high-pressure fuel injector delivers fuel directly into the combustion 

chamber early enough in the cycle to provide homogeneous fuel–air mixture 

formation and minimize wall wetting. In wall guide stratified-charge DI engines, the 

centrally located PDI injector or multi-hole injector injects through the cylinder axis to 

a near mounted spark plug with electrodes placed at the edge of the spray plume. 

For wall guide stratified-charge DI engines, side-mounted high-pressure multi-hole 

injectors are being used currently. The spray-wall interaction and wall wetting 

measurement are discussed in this section. 

 Fig. 4.38 shows the spray evolution at impinging conditions for GDI side-

mounted multi-hole injector C. The experiment was carried out using a constant 

volume vessel and test results were used to support the CFD simulations. The 

distance between the piston surface and injector nozzle tip was set at 15 mm with an 

angle of 23 deg from the horizontal axis. The yellow line on the piston represents the 

bottom edge of the piston bowl. The impingement starts after 0.25 ms and the 

predicted 3D parcel cloud shows good agreement with the Schlieren spray 

visualization results. At 2 ms and 3 ms after start of injection, the droplets with bigger 

size can be seen on the tip of impinged spray from both experimental and numerical 

results. The 2-dimensions computed velocity filed and equivalence ratio show that a 

bigger vortex formed after spray impinged the piston surface, moved along the 

piston bowl and then lifted when it reached the edge of the bowl.  
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             (a)                            (b)                          (c)                           (d) 

Figure 4.38  Comparison of experimental spray evolution and CFD-simulation for 
multi-hole injector (a) Schlieren images; (b) 3D parcel representation; (c) 2D velocity 
vector field; (d) 2D equivalence ratio  (Tch= 150°C, Pch= 1bar, Injection duration = 
0.5ms) 
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Figure 4.39 Instantaneous images of the fuel film thickness. Multi-hole injector, 
Injection duration = 0.5ms. 
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                                                                 (a) 

 

 

                                                                 (b) 

 
Figure 4.40 Averaged film thickness of multi-hole injection, and injection duration = 
0.5ms, (a) Tch = 100°C, (b) Tch= 150°C. 
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 The film thick is also depended on the chamber pressure: the annular area of 

higher pressure is slightly larger and film thickness is also higher. Same situations 

can be seen in Fig. 4.39 and Fig. 4.40, which shows the instantaneous images and 

time evolution of liquid film thickness of the spray of multi-hole injector C. From the 

instantaneous images, only three spray plumes hit the window surface at Tch= 

150 °C, Pch= 1bar and Injection duration = 0.2 ms. Other cases have 5 plumes hit on 

the surface.  

 The computed evolution of liquid film thickness and equivalence ratio iso-

surface was presented in Fig. 4.41. The wall surface is flat for both injectors. The 

liquid fuel film structure of outwardly opening PDI injector and multi-hole injector are 

in good agreement with experiment results as shown in Fig. 4.34 and Fig. 4.39. The 

values of liquid film thickness for both injectors when the fuel film deposit on surface 

are close to the results from RIM experiment as shown in Figure 4.35 and 4.40. For 

a further validation of film vaporization, more numerical calculations are required to 

verify the time evolution of liquid film thickness. 
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Figure 4.41 Computed evolution of liquid film thickness and iso-surfaces 
(equivalence ratio = 1, opaqueness = 30%) for PDI injector (left) and multi-hole 
injector (right)   (Tch= 100°C, Pch= 1bar, Injection duration = 0.5ms) 
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 Refractive Index Matching (RIM) technique is used measure the liquid fuel 

film thickness for multi-hole GDI Injector D. Table 4.1 shows the reference conditions 

for a direct injection engine. Multi-hole injector was mounted with 25 deg to simulate 

a side-mounted DI engine configuration. Iso-octane was used as reference fuel. 

Different chamber pressure and temperature, injection pressure and duration, and 

distance between the injector tip and window were investigated. Fig. 4.2 and Fig. 4.3 

show the wall wetting images.  

 

Table 4.1 Operating conditions 
 
Case  

   # 

Distance 

  (mm) 

Air press. 

  (bar) 

Air temp. 

  (oC) 

Injection press. 

       (bar) 

Fuel temp. 

    (oC) 

Pulse width 

      (ms) 

1 30 1 50 35 40 2.83 

2 30 1 50 140 40 1.41 

3 40 1 50 35 40 2.83 

4 40 1 50 140 40 1.41 

5 30 1 50 70 40 2 

6 30 2 50 70 40 2 

7 30 1 75 70 55 2 

8 30 2 75 70 55 2 

9 30 1 100 70 70 2 

10 30 2 100 70 70 2 
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Figure 4.42 Wall wetting images (Case#1~4) after fuel droplet deposit on window 
surface. 
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Figure 4.43 Wall wetting images (Case#5~10) after fuel droplet deposit on window 
surface. 
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 Liquid fuel film thickness, spatial distribution and adhered puddle mass for a 

side-mounted multi-hole injector under different operating conditions were studied 

using RIM method. Evolution of the fuel film thickness, mass and spatial distribution 

after fuel deposit on the window is presented in Fig. 4.44 for cases 1, 2, 3 and 4 to 

illustrate the effect of injection pressure (35bar and 140bar), injection duration (1.41 

ms and 2.83 ms) and distance between the injector tip and window (30 mm and 40 

mm). For injection emerging from the side-mounted multi-hole GDI injector, mean 

film thickness results from spray plumes were investigated. The mean film thickness 

is an instantaneous average over the entire area of deposit film. As the spray 

targeting scheme shown in Table 3.4, three lower spray plumes first impinge the 

window and then the two middle plumes (4th and 5th) land later. The last plume (6th) 

does not meet the window for all cases in this study. Therefore, up to five wetted 

spray footprints could be measured.  

 The dynamic evaporation can be found from the film thickness spatial 

distribution in Fig. 4.44, thinner film (blue) evaporates fast and thicker film (red) has 

slower evaporation. The wetted areas of cases 2 and 4 are much larger than the 

areas of cases 1 and 3 respectively due to the high injection pressure. The camera 

speed is 1000 fps for RIM test, which is not fast enough to record the process of 

spray impinging, so that the curves of averaged film thickness and mass in Fig. 4.45 

could be roughly extended to initial deposit time though the line slope, which 

presents the rate of evaporation. Also, the gently sloping curves of cases 1 and 3 

are result of saturation of the rough surface of the window. Therefore, the maximum 

film thickness of the RIM measurement in this study is underestimated. For the high 
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injection pressure cases 2 and 4, the film evaporates much faster after deposition on 

window, compared with cases with 35 bar injection pressure. The reason of the 

larger film area and faster evaporation for the high injection pressure cases is that 

the velocity at which droplet impacts is higher and the atomization of spray is better. 

For case 3 and 4, the distance between injector tip and window is 40mm, as shown 

in Fig. 4.44, the film thickness and deposit area of the 4th and 5th spray plumes were 

much thinner and smaller compared with 30mm distance cases.  

 

 

 

 

Figure 4.44 Evolution of fuel film thickness and spatial distribution (Case#1~4) after 
fuel droplet deposit on window 

 

 

 

0 ms                1 ms               2 ms                5 ms               50 ms              200 ms        1000 ms 

#1 

 

#2 

 

 

#3 

 

#4 



www.manaraa.com

121 
 

 
 

 

 

 

 

 

Figure 4.45 Averaged film thickness and film mass after fuel droplet deposit on 
window (Case#1~4). 
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 The film mass in Fig. 4.45 was calculated from the averaged film thickness 

and the corresponding film deposit area. Case 1 has the longest evaporation time 

due to its low injection pressure and long injection duration. The maximum film mass 

of case 1 is around 3 mg at time zero (by extrapolation) and takes over 4 seconds to 

completely evaporate. Case 2 has a higher injection pressure than case 1, but both 

cases have the same injection mass (24.5mg); therefore case 2 has a shorter 

injection duration. The higher injection pressure resulted in lower film thickness and 

mass and consequently faster film evaporation. For cases 3 and 4, which have 

significantly different wetted footprints due to greater impact distance, the effects of 

injection pressure on film thickness and mass are similar, at least in the beginning. 

 The effects of ambient pressure (1bar and 2bar), ambient temperature (50oC, 

75oC, and 100oC), and fuel temperature (40oC, 55oC, and 70oC) were investigated 

and shown in Fig. 4.46 and Fig. 4.47. Ambient temperature, which includes the 

impinging place, and fuel temperature were increased together to represent the 

warm up of an engine. For cases with 1bar air pressure (5, 7 and 9), the film 

thickness decreases faster with increasing temperature as shown in Fig. 4.47. For 

the cases of 2bar air pressure (6, 8, and 10), the maximum film thickness are higher 

than the ones with 1bar ambient pressure, at corresponding temperatures. The rate 

of evaporation is much slower for the 2bar air pressure cases, especially at low 

temperature. Comparing the results in Fig. 4.46 and Fig. 4.47, it is obvious that the 

temperature has the most dominant effects on fuel film thickness and mass. Ambient 

pressure has a secondary role on the film mass, but has stronger effects on the rate 

of film mass evaporation.  
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Figure 4.46 Evolution of fuel film thickness and spatial distribution (Case#5~10) after 
fuel droplet deposit on window. 
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Figure 4.47 Averaged film thickness and film mass after fuel droplet deposit on 
window (Case#5~10). 
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 In this study, numerical simulation of the multi-hole spray injection was carried 

out using multi-dimensional CONVERGE CFD codes. In each case, around 60,000 

parcels of fuel spray were tracked for sufficiently precise statistical resolution. In 

order to obtain a better agreement of the spray impingement and wall fuel film of the 

multi-hole injector, back-lighting visualization technique was chosen to illuminate the 

free spray transport process first and then the spray impinging process. Fig. 4.48 

shows the comparison of free spray development for case 5 and 6. The simulated 

spray behavior is also shown in this figure and good agreement between back-

lighting visualization and calculations is obtained with respect to spray cone angle, 

tip penetration and general shapes under different ambient pressure. The size of 

background grids is 5 mm × 5 mm.  

 Experimental evolution of the impinging spray was compared with simulation 

results in Fig. 4.49. Fuel droplets deposited on a flat window surface around 0.6 ms 

after the start of injection. For the side-mounted multi-hole injector in this study, one 

spray plume will not reach the window surface as shown in the figure. Higher 

ambient pressure (Fig. 4.49, case 6) suppressed the spray shape propagation 

narrower and shorter. The spray cone angle and tip penetration of the experimental 

spray were compared with computational results and also show very good 

agreement. 
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                                      (a) Case 5: side view and front view                                  
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                                      (b) Case 6: side view and front view. 

 

Figure 4.48 Comparison of experimental free spray evolution and CFD-simulation 
(3D parcel representation). 
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                                                               (a)      

                                 

 

 
 

 

 
 
                                                                 (b)  

 
Figure 4.49 Comparison of experimental impinging spray and CFD-simulation (3D 
parcel representation). (a) case 5, (b) case 6. 
  

 Comparison of the experimental liquid film measurement and simulation is 

shown in Fig. 4.50 and Fig. 4.51. Injection mass in this work keeps 24.5 mg. The 

spray deposit area and shape have reasonable agreement as shown in Fig. 4.50. 

The simulation result of film spatial distribution shows higher film thickness around 
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the center of each puddle. The computational value of maximum film thickness is 

about 1.2 µm, which is very close to the experimental result of 1.4 µm. The 

numerical grid size of the impinging surface is 1mm, and the experiment image 

processing is based on 1 pixel (0.15 mm). This may be the main reason that why the 

simulation contours profile of film distribution is not as smooth as the experimental 

contour plot. Although the evolution of film mass evaporation shows similar trends, 

the calculated maximum film mass is consistently higher than the experimental 

values. As shown in Fig. 4.51, the simulated film mass is higher than the 

corresponding RIM experimental results. The reason for this discrepancy may have 

to do with the surface roughness of the ground glass diffuser and/or the modeling of 

spray impingement processes, and will be the subject of further investigation. 
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Figure 4.50 Comparison of experimental fuel film thickness and spatial distribution 
(left) and CFD-simulation (right), 2.6ms after start of injection (Case#6). 
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                                                                 (b) 

Figure 4.51 Comparison of experimental fuel film mass and CFD-simulation. Top: 
case1 and 2, Bottom: case 5 and 6. 
 

 

4.3 Interaction between Spray and Charge Motion 

 In GDI engines, detailed investigations of both spray-charge motion 

interaction and spray-wall interaction are necessary and challenging. The complete 

evolution of the fuel-spray, including the liquid film formation has been described in 

previous sections. Advanced flexible valve-train, with valve-deactivation and variable 

valve-lift, produces very dynamic charge flow motions, with varying tumble and swirl 

ratios. The resultant turbulent flow interact with off-axis multiple-hole DI injections, 

has important implications for the engine mixing and resultant combustion 

performance. In this section, the effect of fuel-spray and valve actuation on air-fuel 

mixing, in-cylinder flow development, surface wetting, and turbulence intensity is 

discussed. The resultant turbulent flow interacts with off-axis multiple-hole DI 
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injections, and effects on the engine mixing and resultant combustion performance 

are also presented. 

 

4.3.1 Effects of Spray pattern and Injection Timing for Baseline case 

 Fig. 4.52 shows the comparison of spray visualization and the simulated 

spray particle clouds, color-coded with drop size down to 1 micron.  The simulated 

spray distributions cover a larger area than the Mie scattering visualization, which 

may have problem resolving smaller drops.  In general, the agreement is good for 

this case. 

 The air flow at the intake valve is very strong and is the dominant turbulence 

generation mechanism for ICE engines. The interactions with multi-hole spray is 

very complicated both spatially and temporally, especially for the deactivated cases, 

and will have a significant influence on the spay impingement and mixing.   

 

 

 

                                                             

                                                               (a) 
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                                                                (b) 

 

 

                                                                 (c) 

Figure 4.52 Comparison between CFD and OAE results of the in-cylinder spray 
processes, 1000 rpm, Injector B, 100MPa, 16mg (0.88ms duration). (a) SOI = 60 
deg CA aTDC, (b) SOI = 120 deg CA aTDC, (c) SOI = 180 deg CA aTDC, 

   240            237            234           231          228           225            222            219   

   180            177           174           171           168            165            162           159   
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 The charge motion is a combination of both swirl and tumble motions which is 

very dynamic and would require 3-D post-processing or CFD to resolve the mixture 

formation processes and interactions. However, the interactions of the fuel injections 

and the charge motions are bettered illustrated by the integral analyses. The 

predicted effects of injection timing on the tumble and swirl ratios of the charge 

motion and the total turbulent kinetic energy are shown in Fig. 4.53. The swirl, which 

is defined as the ratio of the angular speed of the flow about the center of mass in 

the z-direction to the angular speed of the crankshaft, is mostly negligible for the two 

inlet port geometry used in this engine. The tumble ratio Y is defined as the ratio of 

the angular speed of the flow about the center of mass in the y-direction to the 

angular speed of the crankshaft. Similarly, the tumble ratio in X-direction is 

calculated by evaluating the ratio of the angular speed of the flow about the center of 

mass in the x-direction. Depending on the injection timing and phasing of the tumble 

dynamics, the fuel injection could inhibit or enhance the tumble motion. Injecting too 

early actually decreases the tumble ratios; later injections at 240o and 180o crank 

angle degree (deg CA) before the fire TDC, the tumble flow was enhanced by the 

fuel injection. In these cases, enhanced turbulent kinetic energy (TKE) due to the 

eddy breakdown of the tumble motion is also observed at the end of compression 

stroke, where faster flame computed by CFD of a few injection timings is shown in 

Fig. 4.53.  
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                                                                   (a) 

 

 

(b) 

Figure 4.53 The effects of SOI on the (a) Tumble and Swirl ratios and (b) integrated 
turbulent kinetic energy, Late Intake Valve Closing (LIVC), injector B, optical engine. 
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                                                                (a) 

 

 

                                                                 (b) 

 

Figure 4.54 (a) Total liquid film mass evolution, and (b) wall wetting footprints at 12 
deg CA ASOI (Right), , Late Intake Valve Closing (LIVC), injector B, optical engine. 
  

SOI:  300 btdc (Inj A)          300 btdc (Inj B)             240 btdc (Inj B)             180 btdc (Inj B)      
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 With the early start of injection (SOI) at 300 deg CA, a large amount of liquid 

impinges on the surface due to the relatively shorter injector-piston distance. For this 

case, the side- and bottom-view of the wetted footprints on the piston are also 

shown in Fig. 4.54. At this timing, the maximum wall film amount for Injector B is 

almost twice as much as Injector A, in spite of less liner wetting because of its spray 

targeting. This piston wetting can be avoided by retarding the injection timing. If the 

injection timing is set to be later than 240 deg CA, the maximum film mass is 

predicted to reduce by 62%. Since the spray injected at 240 deg CA and later was 

not found to touch the piston, the film mass could be located on the side wall. 

 A 4-cylinder 2.0-liter metal engine which has the same configuration of 

cylinder head, injector, cams, and bore size as the optical engine, was used to carry 

out the combustion and emission tests [112]. This present paper focuses only on the 

low-speed and naturally aspiration conditions, primarily because using Early Intake 

Valve Closing (EIVC) at higher speeds with one valve inactive limits the peak load of 

the engine. The engine has a compression ratio of 11.9, to enable flex-fuel (E0~E85) 

operation. A typical metal engine test results in Fig. 4.55 show the effects of start of 

injection (SOI) timing on soot (Filtered Soot Number or FSN, measured with an AVL 

415 smoke meter), coefficient of variability (%COV) of BMEP, and the burning speed 

in deg CA (10 to 75% mass fraction burnt, or CA10-CA75). The injection widow is 

constrained by the soot measurement which strongly depends on wall wetting, and 

Coefficients of Variability (COV) of IMEP which depends on the uniformity of the 

mixture. As a result, the injection window is around 120 deg CA to 200 deg CA after 

the intake TDC. During this window the burning speed and COV are observed to 
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increase and decrease respectively, consistent with the enhanced turbulent mixing 

of the DI sprays as indicated by the computed tumble flow and turbulent kinetic 

energy characteristics.  

 

 

 

Figure 4.55  Effect of injection timing on engine combustion: 1500 rpm, 4.7 BMEP, 
Low-Lift EIVC, Injector B, E85 [112]. 
 

 The results are consistent with the CFD in terms of the injection window, 

where the injection timing is constrained by wall impingement which is correlated to 

soot (FSN), and incomplete mixing which is correlated to combustion instability 

(COV). Injection too early or too late result into wall impingement; similarly injection 

too early or too late usually results into insufficient mixing due to the interaction of 
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spray injection with the tumble flow. Higher turbulence enhances mixing before 

ignition and enhances combustion after ignition; therefore, there is optimal injection 

timing for faster mixing and combustion speed within the injection window. 

 

4.3.2 Effects of Valve Actuation for Low-Speed Low-Load Case 

 Naturally aspirated DISI engines usually has poor charge motion at low 

speeds with EIVC, and high particulate levels when operating at high loads on 

gasoline and intermediate ethanol blends. Use of valve deactivation has been shown 

to improve stability and reduce particulate emissions at low loads and very low (2~3 

mm) lift valves [90, 91].  

 In order to evaluate the effects of flexible valvetrain, the engine is modified 

with a dual-independent cam-phaser (DICP) as shown in Fig. 3.12. The 2-Step 

variable valve lift system was installed to provide compression ratio management 

using Late- and Early- Intake Valve Closing (LIVC and EIVC). These strategies 

allowed change of effective compression ratio and load control by use of cam 

phasing.  

 Simulation was also carried out to compare and validate with experimental 

result for valve deactivation. For example, Fig. 4.56 shows images at 7.5 and 12.5 

deg CA ASOI with injection at 270 deg CA with LIVC deactivation configuration. Only 

the bottom right intake valve was active in the bottom view for the one-valve case. 

The simulation results show the distribution of the particles with radius information in 

color. Even though CFD sprays overshoot for some extent, agreement of overall 

spray shape is in fair agreements for more asymmetric fuel distributions.  Because of 
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the higher lift, there is spray impingement on the intake valve which should be 

avoided.  High lift is also not necessary at low load cases. 

 The effects on valve deactivation of EIVC cases can be visualized by false 

coloring the spray images and superimpose them. For example, Fig. 4.57 shows the 

effects of valve-deactivation on the in-cylinder sprays, with the two-valve case 

colored red, and the one-valve case, green; therefore the overlapped spray regime 

is yellow. The effect of injection timing is also shown in 310 deg CA and 290 deg CA 

before fire TDC. 

     

 

Figure 4.56 CFD validation with injection at 270 deg CA with LIVC deactivation 
configuration, 1000 rpm, Injector A. 
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                 (a) 

 

 

 

                                                                  (b) 

Figure 4.57 Superimposed false-color in-cylinder spray image sequences showing 
the effects of valve deactivation on mixing, various SOI (vertical) from (a) 310 deg 
CA and (b) 290 deg CA bTDC: 2-Valve (Red) vs. 1-Valve (Green), EIVC, 1000 rpm, 
1 bar BMEP equivalent. 
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 The optical engine data show that valve deactivation deflects the spray and 

entrain it into the higher velocity intake flow. Visualization of sprays with valve 

deactivation appears to show faster impingement on the piston surface for early SOI 

at conditions that soot was also observed for the fired engine. The increased 

turbulent mixing due to the stronger bulk motion increases the rate of vaporization as 

the green spray of the deactivated-valve case is shown to disappear faster than the 

red baseline case.  The acceptable injection timing window is limited in the engine 

data by soot (>0.1 FSN) for early timings, and poor combustion stability (>1.5%COV) 

for later timings. Valve deactivation is shown to increase the injection window by 

stronger turbulent mixing due to the reduced intake opening and therefore higher 

intake velocity. Vaporization of the spray is faster with valve deactivation according 

to the simulation as shown in Fig. 4.58. 

 

 

Figure 4.58 The effects of valve deactivation on spray vaporization. 
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 The computed integral analysis of the bulk flow dynamic ratios, which 

consists of a swirl ratio and two (X and Y) tumble ratios, are plotted in Fig. 4.59. The 

baseline 2-valve charge motions were dominated by the in-plane (or Y direction) 

counter-clockwise tumble motion, similar to Fig. 4.53, with the HLC case greater 

than LLC one. When one valve was deactivated, both the swirl and the out-of-plane 

(or X) tumble motions significantly appear, with the tumble changing directions or 

signs during the mixture preparation cycle, sometimes more than once. Even though 

HLC produces overall stronger and more coherent charge motion, the dynamic 

ratios of LLC develops faster at the beginning, due to the faster inlet air velocity 

coming through the reduced inlet valve open area. Consequently, the mass-

averaged turbulent kinetic energy (TKE) during the mixture formation period is much 

higher; more than double that of the HLC cases. Similarly, the TKE of the 

deactivated cases more than double that of the two-valve cases, as shown in Fig. 

4.60. However, the higher TKE dissipates quickly and does not sustain well into the 

flame initiation phase, but fall below that of the two-valve cases. The enhancement 

of TKE by the fuel injection depends on the phasing of valve opening and is shown 

to favor the HLC cases for the engine and injector configurations.  

 

 



www.manaraa.com

144 
 

 
 

 

     (a) 

 

     (b) 
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 (c) 

Figure 4.59 Computed Charge motion Dynamic ratios of VVA, SOI=60o  aTDC, 1000 
rpm, 1 bar BMEP equivalent. (a) Tumble ratio Y, (b) Tumble ratio X, (c) Swirl ratio. 
 

 

Figure 4.60 Averaged turbulent kinetic energy, SOI= 60o aTDC, 1000 rpm, 1 bar 
BMEP equivalent. 
 



www.manaraa.com

146 
 

 
 

 However, this TKE enhancement advantages is countered by the stronger 

bulker motion which sends more fuel sprays toward the combustion chamber walls. 

The deactivated 1-valve cases have not only stronger turbulent mixing but stronger 

3-D rotational flows, which produce an insular effect on the spray plumes and keep 

the bulk spray plumes from the walls. Fig. 4.61 shows the cumulative combustion 

chamber wall film mass.  

  

 

 

Figure 4.61 Total liquid film mass, SOI= 60o aTDC, 1000 rpm, 1 bar BMEP 
equivalent. 
 

 The mixing CFD calculations confirm the metal engine data (Fig. 4.62) that 

more turbulent resulted in more uniform mixing, less liquid film, more stable 

combustion and wider injection window. Injection too early at 30 deg CA aTDC 

cause wall impingements and incomplete mixing, as a result, the engine combustion 
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results is expected to have high soot and COV. For this engine test, cam timing 

optimization was carried out at each operation point to maximize engine efficiency 

for both the conventional 2 valve and the 1 valve (valve deactivation) modes. The 

cam timing optimization was conducted independently for the different strategies to 

allow comparison at an optimal performance point. During testing, two fundamental 

issues at low speed operations were identified with the conventional 2-valve 

configuration and that valve deactivation was able to address. At low loads with 

EIVC, combustion stability was poor under un-throttled conditions. To improve 

combustion stability and efficiency the engine had to run under throttle with minimal 

valve overlap to limit residual. 

 
 

                      (a) Two intake valves     
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     (b) One intake valve (Deactivation) 

Figure 4.62  Metal engine test results at 1000RPM, 1bar BMEP with EIVC 

4.3.3 Effect of Variable Valve Actuation for Medium and High-Load Case 

Higher valve lift is usually beneficially at higher load due to better breathing. 

The effects of flexible valvetrain on engine combustion at higher speed and load are 

shown in Fig. 4.63 and Fig. 4.64 for 2000rpm, 2bar BMEP case, and 1500rpm, 8bar 



www.manaraa.com

149 
 

 
 

BMEP case respectively. Fig. 4.63 shows a very small acceptable injection window, 

highlighted in yellow, for this condition with 2 valves. This narrow window was typical 

of the EIVC strategy. A comparable injection timing sweep with valve deactivation is 

shown in Fig. 4.63b. The use of valve deactivation at this condition allowed a wide 

degree of cam phasing with good stability. Un-throttled conditions could be achieved, 

although optimal efficiency was under slightly throttled conditions. This allowed a 

significant reduction in pumping losses resulting from reduced throttling from 53kPa 

MAP with 2 valves to 95kPa MAP with 1 valve deactivated. The lower pumping work 

resulted in a reduction of fuel consumption (Brake Specific Fuel Consumption, or 

BSFC).  

            

                  

                        (a)                                                                  (b) 

      
Figure 4.63  EIVC @2000 RPM, 2 Bar BMEP, LLC.  (a) 2-valve vs. (b) 1-valve.      
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                        (a)                                                                  (b) 

 
Figure 4.64 LIVC @1500 RPM, 8 Bar BMEP, HLC.  (a) 2-valve vs. (b) 1-valve.  
 

 Another problem identified was the undesirably high soot emissions at low-

speed high-load conditions with the LIVC strategy.  Even though combustion stability 

was improved with wider timing authority, the soot could not be reduced by retarding 

injection timing.  A typical operation point is at 1500 rpm 8 Bar BMEP, as shown in 

Fig. 4.64 for the LIVC timing sweep for the 2 valve configuration.  A review of the 

soot and the hydrocarbons emissions shows increased levels with injection retard. 

This indicates that fuel impinging on the combustion chamber wall is not adequately 

vaporized and mixed prior to combustion, which may be in the mode of pool fire.  

Operating the engine with one valve deactivated increases swirl and tumble and 

provides a significant advantage in soot emissions, as shown in Fig. 4.64b. Injection 

Timing is still limited at early timings by impingement on the piston but later timing 

allows a significant reduction in soot and hydrocarbons. It is noteworthy that in Fig. 
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4.63 and 4.64, the CO emission, which is indicative of the level of uniformity of the 

combustible mixture, tracks the trends of COV and BSFC quite closely.     

 In the CFD simulation, four cases pertaining to operation of the Early Intake 

Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) at 2000rpm 2Bar BMEP, 

and 1500rpm 8Bar BMEP, to illustrate the interactions of multi-hole DI sprays with 

VVA charge motions. The computed flow fields are highly dynamic and three-

dimensional as shown by the instantaneous streamlines which is color-coded by the 

velocity magnitude in Fig. 4.65 for these four cases. 

 

 

                 (a) 
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        (b)  

 

 

                (c) 
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       (d) 

Figure 4.65 The Streamlines of EIVC cases at 2000 rpm: (a) 2-valve vs. (b) 1-valve; 
LIVC cases at 1500 rpm: (c) 2-valve (d) vs. 1-valve. 
  

  

 It is clearly visible that valve deactivation promotes more vigorous charge 

motion through the intake stroke, and directs the high speed flow advantageously to 

the center of the cylinder for mixing although larger pumping loss may be the trade-

off.  
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      (a) 

 

      (b) 

Figure 4.66 The side view of fuel droplet distributions of EIVC cases at 2000 rpm, 2 
Bar BMEP:(a) 2-valve vs. (b) 1-valve. 
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(a) 

 

       (b)  

Figure 4.67 The bottom view of fuel droplet distributions of EIVC cases at 2000 rpm, 
2 Bar BMEP: (a) 2-valve vs. (b) 1-valve. 
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Figure 4.68 Interaction between spray and intake charge motion. 
 



www.manaraa.com

157 
 

 
 

 The simulated spray pattern and droplet distribution are shown for the EIVC 

2000 RPM, 2 Bar BMEP cases are presented in Fig. 4.66 for side view and Fig. 4.67 

for bottom view respectively, with (a) and without (b) valve deactivation. Injection 

timing is at 60 deg CA aTDC. Valve deactivation shows behavior similar to the 

optical engine visualization where the spray clouds are entrained toward the active 

intake valve into the inlet jet. Vaporization of the spray is faster with valve 

deactivation. The interaction between fuel injection and intake charge motion is also 

shown in Fig. 4.68.  

 The in-cylinder dynamic ratios were analyzed and the results are compared 

with and without valve deactivation in Fig. 4.69. The results show the swirl and two 

components of tumble around the x and y axis of Fig. 4.69a. When both valves are 

active the flow is tumble dominated, initially with a reverse tumble followed by a 

forward tumble around the y-axis. When a valve is deactivated swirl and a cross 

tumble around the x-axis become significant and the initial reverse tumble is reduced. 

The location of the SOI timing is shown for reference. 

 The dynamic ratios for the LIVC condition are presented in Fig. 4.69b. The 

results with 2 valves show the tumble dominated condition similar to EIVC. The use 

of valve deactivation promotes more vigorous charge motion through the intake 

stroke since the valve closes significantly after BDC. The absolute magnitude of the 

swirl and tumble increases and swirl persists up through TDC. Fig. 4.70 shows the 

velocity streamlines. Deactivation of one of the intake valves for both EIVC and LIVC 

produces swirl charge motion. The strong swirl in the cylinder significantly reduces 

the wall wetting (droplet particles in Fig. 4.70) which is also shown in Fig. 4.71. 
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          (a)  

 

            (b) 

Figure 4.69 The effects of valve deactivations on computed charge motions dynamic 
ratios. (a) EIVC case:2000 rpm 2 bar BMEP, (b) LIVC case:1500 rpm 8 Bar BMEP. 

SOI 

 SOI   1V    2V 
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                                                                 (a) 
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                                                                 (b) 

Figure 4.70 In-cylinder flow streamlines and wall wetting. (a) EIVC case:2000 rpm 2 
bar BMEP, (b) LIVC case:1500 rpm 8 Bar BMEP. 
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Figure 4.71 Total liquid film mass. 
 

 To evaluate the effectiveness of valve deactivation on fuel-air mixing, the 

homogeneous distribution in-cylinder was displayed by equivalence ratio contours 

and mass fraction plot in Fig. 4.72 and Fig. 4.73. Data is presented for both EIVC 

and LIVC operation conditions. Valve deactivation reduces the variation of air fuel 

ratio for both strategies. The LIVC has more variation earlier in the injection stroke 

as wall films and rich regions are mixed in at the higher load condition. At the time 

appropriate for ignition and combustion the more vigorous charge motion from the 

LIVC strategy has provided a more uniform mixture. Valve deactivation improve the 

spray vaporization and hence the air-fuel mixture homogeneity. 
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(a) (b)          

 

 

      

                                (c)                                                                (d)  

 

Figure 4.72 In-cylinder air-fuel distributions before combustion. (a) 2-valve, (b) 1-
valve (EIVC, 2000 rpm), (c) 2-valve, (d) 1-valve   (LIVC, 1500 rpm). 
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Figure 4.73 Equivalence ratio distributions at spark timing. 

3D CONVERGE code was used to investigate the combustion process of GDI 

metal engine. With the capability of local mesh refinement, adaptive mesh 

refinement (AMR) and the detailed chemical kinetics combustion model, the spark 

ignition can be simulated by generating a fine mesh around the spark plug. Fluid 

motion in the spark region is not quiescent. On the ns time scale of the breakdown 

spark discharging phase (less than 0.5 degree CA), this fluid motion is not important. 

In the arc/glow spark discharging phase, the arc between the electrodes gets 

advected with the flow and stretches out in length [54]. Fig. 4.74 shows the spark 

energy source in EIVC valve deactivation case moving with the air flow. Each point 

in the spark source has different velocity due to the spatial variation of fluid velocity. 
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The energy source represented by temperature contour (2000 K) is moving with the 

clockwise in-cylinder swirl flow. 

 

Figure 4.74 In-cylinder velocity vector field and temperature iso-surface (2000 K). 1-
valve (EIVC, 2000 rpm).  

The reaction mechanism involves iso-octane and n-heptane. It contained 48 

species and 80 reactions. Predictions of NOx emissions are made using an 

extended zeldovich NOx model. The Comparison between computed and 

experimental profiles of in-cylinder pressure is shown in Fig. 4.75. The test result is 

the cylinder pressure averaged by 50 cycles. The operating condition is 2000 RPM, 

2 Bar BMEP, throttling 53 kPa MAP. The initial and boundary conditions of this 3-D 

simulation are generated using 1-D GT-Power calculated results. A rather 
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satisfactory agreement is achieved. Fig. 4.76 shows the integrated heat release 

(summed over time) and the evolution of the ignition kernel and flame front of EIVC 

2 valves and 1 valve case. 

 

 

Figure 4.75 Comparison between computed and experimental profiles of in-cylinder 
pressure. EIVC Metal Engine 2000 rpm, 2 bar BMEP (2 valves). 
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Figure 4.76 Evolution of ignition kernel and flame front.  (a) EIVC Metal Engine 2000 
rpm, 2 bar BMEP, (b) LIVC Metal Engine 1500 rpm, 8 bar BMEP. Temperature iso-
surface (2000 K). 

To analyze the turbulence and combustion interaction, local flame front 
structure is commonly observed by PLIF (planar laser-induced fluorescence) 
imaging of CH, OH, and CH2O. Formaldehyde (CH2O or HCHO) is an important 
combustion intermediate and formed primarily in the preheat zone. Fig. 4.77 shows 
the evolution of the CH2O mass and concentration (40, 30, 20, 10 and 0 CA deg 
before TDC), which is correlated to the position of peak heat release within the flame 
front. Further study of optical visualization and numerical simulation of combustion 
should be conducted because it is very critical for GDI engines.  
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Figure 4.77 Evolution of CH2O mass and concentration. EIVC Metal Engine 2000 
rpm, 2 bar BMEP (2 valves). 
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CHAPTER 5    CONCLUSION 

5.1 Summary of the Work 

Internal nozzle flow 

 Nozzle exit flow conditions are critical to predictive spray modeling. 

Characteristics of the internal flow structure near a fundamental single-hole research 

diesel nozzle, a symmetric two-hole diesel nozzle, and a three-hole DI gasoline 

research injector exit were investigated using multi-dimensional multi-phase CFD 

simulations in an attempt to better understand the primary breakup mechanisms of 

DI injectors, and to better correlate to the near-nozzle jet morphology using ultrafast 

x-ray phase-contrast imaging technique during quasi-steady injection process.  

� Sprays from the two-hole nozzle are dominated by vortex flow inside the 

nozzle. Vortical wavy structure of the emerging spray verifies the existence of 

rotational flows inside the nozzle. CFD simulations of the single-hole and two-

hole fundamental flow configurations also show that the three-dimensional 

fluid flow entering the two-hole nozzle creates stronger streamline curvature, 

and streamwise vorticity which are by default absent in the axisymmetric 

single-hole nozzle.   

� The overlapped wavy structures inside the two-hole nozzle spray indicate that 

the counter-rotating vortices formed inside the nozzle affects the two-hole 

nozzle spray development. Unstable flow characteristic of the two-hole nozzle 

caused higher shot-to-shot variation in spray morphology, larger spray angle 

and faster break-up of the spray compared to the single-hole nozzle spray 

which has laminar-like flow characteristics. Numerical results show that the 
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two-hole nozzle also produces thicker shear layer and higher turbulence level 

and wider initial divergence angle. The streamwise counter-rotating vortices 

are actually bound by a thin shear layer near the wall within the orifice which 

will be relaxed immediately upon exiting the orifice. 

� More turbulent jet morphology was observed inside the two-hole nozzle spray 

upon increase in injection pressure. Wavelength of the wavy structure was 

decreased at high injection pressure and it caused faster break-up of the 

emerging spray. The shot-to-shot deviation in spray angle and wavelength 

was decreased upon increase in injection pressure supposedly due to break-

up of the larger-scale unstable vortex flow into the finer-scale turbulences. 

CFD simulation also shows high strength of rotation with high injection 

pressure. 

� The interactions of the streamwise vortices with the downwash and turbulent 

flows will enhance the interfacial instability and produce wider spray cone 

angles observed in the phase-contrast X-Ray images.  

� The vorticity strength of the multi-hole nozzle is strong. Increase in the hole 

number were shown to have an intensifying effects in general for rotational 

and turbulent flow structure.   

� The lower vortex pair turns out to have stronger intensity than the upper one 

at the nozzle exit. This is consistent to the observation in the spray that the 

lower waves have consistently shorter length scales than the upper ones 

mentioned above. 
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� The oscillation frequency of the URANS simulation is on the order of 5 to 10 

MHz depending on the injection pressure is consistent to the wavelength 

observed experimentally. 

� The results show that strong interactions of the vortex streaks, cavitation, and 

transitional turbulence in the nozzle and sac volume. These complicated 

unsteady flow features dominate the near-nozzle breakup mechanisms which 

are quite unlike those of diesel.  The interfacial structure inside the spray is 

characterized by 3-D ligaments and membranes, indicative of 

turbulence/vorticities and cavitational breakup mechanisms. The results also 

show that the cavitation become stronger at lower needle lift. 

 

Wall Impingement 

 In this work experimental and computational investigation was implemented 

for the spray vaporization and spray-wall interaction of the outward opening piezo-

driven injector and side-mounted DI gasoline multi-hole injector. The Refractive 

Index Matching technique was performed to measure the fuel film resulting from 

spray impingement for the PDI injector and multi-hole injector in a conditioned 

pressure chamber.  

� The effect of ambient temperature on fuel film thickness was very significant.  

� The film evaporation rate was also strongly affected by the ambient pressure 

especially at lower temperature. 

� The deposit area and shape of each spray plume was affected by the 

injection pressure and the distance between injector tip and window. 
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� Higher pressure at the same fuel amount tends to reduce film thickness. 

� The computed results show close maximum peak film thicknesses with the 

experimental data, and need perform further work to verify the liquid film 

evolution. 

� CFD simulation was also conducted, validated first with spray visualization on 

the free spray transport and then compared with the RIM test results. The 

numerical investigation of spray behavior and film characteristics agrees in 

general with the experimental observations in terms of overall spray shape, 

tip penetration and wall impingement pattern, and the maximum fuel film 

thickness. However, the predicted fuel mass is greater than the RIM results 

possibly due to the surface roughness and the modeling of spray 

impingement. 

 

OAE Testing 

 This paper describes a combination of spray visualization and CFD simulation 

to investigate the interactions of side-mounted GDI multiple-hole sprays with the 

mixture formation processes.  The major findings are listed as follows:   

• Valve-deactivation and variable valve-lift, produces very dynamic charge flow 

motions, resulting in various tumble, swirl, and turbulent flows, which interacts 

with off-axis multiple-hole DI spays, has important implications for the engine 

mixing and resultant combustion performance. 

• Injection timing is constrained by wall impingement which is correlated to soot 

(FSN), and incomplete mixing which is correlated to combustion instability (COV).  
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Injection too early or too late result into wall impingement; similarly injection too 

early or too late usually results in insufficient mixing. 

• Higher turbulence enhances mixing before ignition and enhances combustion 

after ignition; therefore, there is optimal injection timing for faster mixing and 

faster combustion.  

• At low-speed low- and medium-load cases, valve deactivation promotes more 

vigorous charge motion through the intake stroke, and therefore better mixing 

and less wall impingement for a wider injection window.  

• Combination of optical diagnostics and CFD simulations provides key tools for its 

continuous development and optimization, although more validations are needed.  

The integral analyses of CFD results are shown to correlate well to the 

combustion and emissions metal engine data.  

• Ignition and flame propagation is complicated by chemistry and turbulence 

interactions, and need more future research. 

 

5.2 Recommendation and Future Work 

 Turbulence and cavitation (flash boiling) modeling are crucial to internal 

nozzle flow and spray atomization, more research is needed in both the experiment 

and simulation sides to improve and validate the accuracy of the numerical schemes, 

and physical sub-models.  

 The surface conditions and heat transfer of the impingement window in RIM 

measurement should be considered and required more study. The predicted fuel 
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mass is greater than the RIM results possibly due to the surface roughness and the 

modeling of spray impingement. 

 The numerical and experimental studied of the in-cylinder spray/mixing in GDI 

engines have been summarized and reconsidered when the GDI engine is fired. The 

simulation study is recommended use 3-D commercial codes coupling with 1-D cycle 

simulation software. The detailed chemistry combustion model with primary 

reference fuel (PRF) reduced chemistry mechanism for 3-D combustion need more 

research.  
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ABSTRACT 

SIMULATIONS AND EXPERIMENTS OF FUEL INJECTION, MIXING AND 
COMBUSTION IN DI GASOLINE ENGINES  

by 
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Advisor: Dr. Ming-Chia Lai 

Major: Mechanical Engineering 

Degree: Doctor of Philosophy 

 Direct Injection (DI) has been known for its improved performance and 

efficiency in gasoline spark-ignition engines. In order to take all the advantages of 

the GDI technology, it is important to investigate in detail the interactions of fuel 

spray and combustion system, such as air-fuel mixing, in-cylinder flow development, 

surface wetting, and turbulence intensity. The characterizations of the internal nozzle 

flow of DI injector are first studied using the multidimensional computational fluid 

dynamic (CFD) simulation. In the meanwhile the numerical and experimental studies 

are carried out to observe the external spray and wall impingements in an optical 

constant volume vessel. The fuel film deposit characteristics were derived using the 

Refractive Index Matching (RIM) technique. Finally, the interactions of sprays with 

the charge motion are investigated in an optical accessible engine using CFD 

simulation and high-speed imaging of sprays inside engines.  

 The numerical results DI injector nozzle show that the complicated unsteady 

flow features dominate the near-nozzle breakup mechanisms which are quite unlike 

those of diesel. The spray impingement, wetted area, fuel film thickness, and the 
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resultant footprint mass were investigated experimentally. The CFD simulation with 

selected models of spray validated first for its transport in the air is used to compare 

the impingement models with the experimental measurements. The spray cone, tip 

penetration and fuel film shapes were in very good agreement. The effects of spray 

patterns, injection timing and flexible valve-train on the bulk flow motion and fuel-air 

mixing in an optical accessible engine, in terms of tumble and swirl ratios, turbulence 

level, and fuel wall film behaviors are discussed. Using integral analyses of the 

simulation results, the mechanisms in reducing fuel consumption and emissions in a 

variable valve-actuation engine, fueled by side-mounted multi-hole DI injectors are 

illustrated. The implications to the engine mixing and the resultant combustion in a 

metal engine are also demonstrated. 
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